

Selected paper: International Conference On Computing (NECICC-2k15)

A Study of DNA Fragment Assembly Algorithms
Satyanarayana Reddy Beeram #1 , Dr. Edara Srinivasa Reddy *2

 #Associate Professor, Dept. of CSE, Kallam Haranadhareddy Institute of Technology, Guntur, Andhra Pradesh, India.
*Professor & Dean of Faculty, Dept. of CSE, Acharya Nagarjuna University, Guntur, Andhra Pradesh, India.

1 snreddy.beeram@gmail.com

Abstract—DNA fragment assembly is a technique that attempts to

reconstruct the original DNA sequence from a large number of

fragments, each several hundred base-pairs long. The DNA

fragment assembly is needed because current technology, such as

gel electrophoresis, cannot directly and accurately sequence DNA

molecules longer than 1000 bases. However, most genomes are

much longer. Originally, the assembly of short fragments was

done by hand, which is not only inefficient, but also error-prone.

Hence, a lot of effort has been put into finding techniques to

automate the shotgun sequence assembly (finding overlap

fragments and then assembling back to original DNA) . The

general outline of most assembly algorithms is first to create a set

of candidate overlaps by examining all pairs, followed by forming

an approximate layout of fragments, and finally creating a

consensus sequence. All existing methods rely on heuristics, since

the fragment assembly problem is NP-hard. The algorithms

developed to solve this problem till now are based on genetic

algorithms, greedy algorithms, pattern matching algorithms,

particle swam optimization and nature inspired algorithms such

as ant colony optimization, artificial bee optimization technique,

cuckoo search algorithm. Among these algorithms, nature inspired

algorithms seems to be the better algorithms for solving DNA

fragment assembly problem.

I. Introduction:

Structure of DNA: DNA (Deoxy Ribo Nucleic Acid) is a

polymer. A polymer is a molecule made up of repeating

subunits. The repeating subunits in DNA are called nucleotides.

Each nucleotide is composed of 3 parts: a 5-carbon sugar, a

phosphate group and a nitrogen base. Nucleotides join together

to form two long chains, one on each side of the molecule, with

the phosphate group and sugar molecules alternating to form

the sides or backbone of the DNA molecule. The sugar

molecule of each nucleotide bonds with the nitrogen base of the

same nucleotide. And, the nitrogen base of one nucleotide

bonds with a nitrogen base of another nucleotide on the

opposite side of the molecule, which forms the rungs of the

ladder. The result is a structure that looks like a twisted ladder

as shown in Figure 2.

 Nucleotide – each nucleotide has three parts(see Fig 1.): a 5-

carbon sugar, a phosphate group and a nitrogen base. In DNA,

there are four possible nucleotides because there are

 four different nitrogen bases.

 5-carbon sugar (Pentose) – Deoxyribose (sugar’s

name)

 Phosphate group – is composed of one atom of

phosphorous surrounded by four oxygen atoms.

Nitrogen base –

 Adenine(A)

 Thymine (T)

 Cytosine (C)

 Guanine (G)

Fig1. A Nucleotide Fig2. A DNA Molecule

Journal of Applied Physics and Engineering Vol.1, No.1 (2016)10-16

10

Selected paper: International Conference On Computing (NECICC-2k15)

DNA encodes hereditary information in a chemical language.

All cells store their genetic information in the base sequence of

DNA. The genotype is determined by the sequence of

bases.DNA is the genetic material of living things.DNA is

located within the nucleus of all cells apart from red blood

cells.DNA is a long chemical sequence and this sequence

contains the information needed for that living thing to develop,

survive and pass its genetic information on to the next

generation.The DNA chemical sequence differs between

individuals. The pattern of this sequence which is made up of

A,T,C,G is called the genotype.

A. DNA Sequencing:

DNA sequencing is the process of determining the precise order

of nucleotides within a DNA molecule. It includes any method

or technology that is used to determine the order of the four

bases—adenine, guanine, cytosine, and thymine—in a strand of

DNA. The advent of rapid DNA sequencing methods has greatly

accelerated biological and medical research and discovery.

Knowledge of DNA sequences has become indispensable for

basic biological research, and in numerous applied fields such as

diagnostic, biotechnology, forensic biology, and

biological systematics [1][3]. The rapid speed of sequencing

attained with modern DNA sequencing technology has been

instrumental in the sequencing of complete DNA sequences,

orgenomes of numerous types and species of life, including

the human genome and other complete DNA sequences of many

animal, plant, and microbial species.

Uses of DNA Sequencing:

DNA sequencing may be used to determine the sequence of

individual genes, larger genetic regions (i.e. clusters of genes

or operons), full chromosomes or entire genomes. Sequencing

provides the order of individual nucleotides in DNA

or RNA (commonly represented as A, C, G, T, and U) isolated

from cells of animals, plants, bacteria or virtually any other

source of genetic information. This is useful for:

 Molecular biology - studying the genome itself, how

proteins are made, what proteins are made, identifying new

genes and associations with diseases and phenotypes, and

identifying potential drug targets

 Evolutionary biology - studying how different organisms

are related and how they evolved

 Metagenomics - Identifying species present in a body of

water, sewage, dirt, debris filtred from the air, or swab

samples of organisms. Helpful

in ecology, epidemiology, microbiome research, and other

fields.

Less-precise information is produced by non-sequencing

techniques like DNA fingerprinting. This information may be

easier to obtain and is useful for:

 Detect the presence of known genes for medical purposes

(see genetic testing)

 Forensic identification

 Parental testing

B. DNA Fragment Assembly Problem:

Biologists have developed very clever laboratory methods for

sequencing DNA. Unfortunately these methods only work on

short DNA fragments, on the order of hundreds of units. A

complete strand of DNA, however, is made of millions of bases.

Biologists do know how to chop DNA strands up into short

fragments, of the size that their sequencing machines can

handle. (Strands which are too short or too long are not

sequenced at all.)

There are some major problems with this. First, when scientists

chop up a strand of DNA, they are not able to control exactly

where the cuts are made; instead, the DNA is chopped into

pieces at random locations in the string. Luckily, though, the

fragments are usually small enough to be read by the sequencing

machine. The second difficulty is that there is no way to keep

track of how the resulting fragments are ordered in the target

strand. So, it will end up with the sequences of hundreds of

thousands of DNA fragments, but no way to piece them

together.

 Therefore, algorithms are needed to solve this fragment

assembly problem.

II. DNA Fragment Assembly Algorithms:

The general outline of most assembly algorithms is first

to create a set of candidate overlaps by examining all pairs,

followed by forming an approximate layout of fragments, and

finally creating a consensus sequence. All existing methods rely

on heuristics, since the fragment assembly problem is NP-hard.

More specifically, assembling DNA fragments is divided into

three distinct phases [4]:

a) Overlap Phase - Finding the overlapping fragments.

This phase consists in finding the best or longest match between

the suffix of one sequence and the prefix of another. We

Journal of Applied Physics and Engineering Vol.1, No.1 (2016)10-16

11

http://www.wikidoc.org/index.php/Nucleotides
http://www.wikidoc.org/index.php/DNA
http://www.wikidoc.org/index.php/Adenine
http://www.wikidoc.org/index.php/Guanine
http://www.wikidoc.org/index.php/Cytosine
http://www.wikidoc.org/index.php/Thymine
http://www.wikidoc.org/index.php/Biotechnology
http://www.wikidoc.org/index.php/Forensic_biology
http://www.wikidoc.org/index.php/Systematics
http://www.wikidoc.org/index.php/Genomes
http://www.wikidoc.org/index.php/Human_genome
http://www.wikidoc.org/index.php/Microbe
http://www.wikidoc.org/index.php/Gene
http://www.wikidoc.org/index.php/Operons
http://www.wikidoc.org/index.php?title=Whole_genome_sequencing&action=edit&redlink=1
http://www.wikidoc.org/index.php/RNA
http://www.wikidoc.org/index.php/Molecular_biology
http://www.wikidoc.org/index.php?title=Evolutionary_biology&action=edit&redlink=1
http://www.wikidoc.org/index.php/Metagenomics
http://www.wikidoc.org/index.php/Sewage
http://www.wikidoc.org/index.php/Ecology
http://www.wikidoc.org/index.php/Epidemiology
http://www.wikidoc.org/index.php/Microbiome
http://www.wikidoc.org/index.php/DNA_fingerprinting
http://www.wikidoc.org/index.php/Genetic_testing
http://www.wikidoc.org/index.php?title=Forensic_identification&action=edit&redlink=1
http://www.wikidoc.org/index.php/Parental_testing

Selected paper: International Conference On Computing (NECICC-2k15)

compare all possible pairs of fragments to determine their

similarity.

Usually, the dynamic programming algorithm is used

in this step to find semiglobal alignments.

 b) Layout Phase - Finding the order of fragments

based on computed similarity scores. This is the most difficult

step because it is hard to determine true overlaps. After the order

is determined, the progressive alignment algorithm is applied to

combine all the pairwise alignments obtained in the overlap

phase. c) Consensus Phase - Deriving the DNA sequence from

the layout. The most common technique used in this phase is to

apply the majority rule in building the consensus. Other methods

exist for finding the consensus, such as the use of probabilistic

scores in PHRAP, a tool used for DNA assembly . The DNA

fragment assembly problem is NP-hard, therefore, it is not

possible to find an exact algorithm that solves this problem and

runs in polynomial time (unless P = NP). The complexity of the

problem increases even further due to the following factors.

 a) Unknown orientation: After the original sequence is cut into

many fragments, the orientation is lost. The sequence can be

read in either 5’ to 3’ or 3’ to 5’. One does not know which

strand should be selected. If one fragment does not have any

overlap with another, it is still possible that its reverse

complement might have such an overlap.

 b) Base call errors: There are three types of base call errors:

substitution, insertion, and deletion errors. They occur due to

experimental errors in the electrophoresis procedure. Errors

affect the detection of fragment overlaps. Hence, the consensus

determination requires multiple alignments in high coverage

regions.

c) Incomplete coverage: It happens when the algorithm

is not able to assemble a given set of fragments into a single

contig.

d) Repeated regions: Repeats are sequences that appear

two or more times in the target DNA. Repeated regions have

caused problems in many genome sequencing projects, and none

of the current assembly programs can handle them perfectly [1].

e) Chimeras and contamination: Chimeras arise when

two fragments that are not adjacent or overlapping on the target

molecule join together into one fragment. Contamination occurs

due to the incomplete purification of the fragment from the

vector DNA.

Over the past decade a number of fragment assembly

packages have been developed, such as Phrap , TIGR assembler,

STROLL, CAP3 (Contig Assembly Program), Celera

assembler , and EULER [4] . In this work, we study several

programs based on different computational methods to tackle

the problem. This work can direct the reader who is interested in

this kind of work and who would like to know more about

algorithms, their design and implementation of these algorithms.

1. DNA Fragment Assembly Using the Genetic Algorithm

The most challenging step in “overlap-layout consensus” DNA

fragment assembly is to order the fragments. Since finding the

exact order of the fragments is an extremely slow process,

heuristic techniques, such as Genetic Algorithm (GA) can be

used. Our GA heuristic was inspired by the work of Parsons et.

al. [10]. The GA population consists of a set of individuals.

Each individual represents one possible alignment. The search

space for the fragment assembly problem is the set of all

possible solutions in the population. We use the permutation

representation with integer number encoding. Permutation

representation requires special operators to make sure that we

always get legal solutions. In order to maintain a legal solution,

the two conditions that must be satisfied are: first, all fragments

must be presented in the ordering, and second, no duplicate

fragments are allowed in the ordering.

The fitness function measures the quality of the alignment and

finds the one that yields the best score. It is applied to each

individual and it should guide the genetic algorithm towards the

optimal solution. We implemented two fitness functions. Fitness

function F1 sums the overlap score for adjacent fragments in a

given solution. The goal here consists in finding the permutation

of fragments (an individual in the population) that has the

highest score [7][11].

The second fitness function, F2, not only sums the overlap score

for adjacent fragments, but also sums the overlap score for all

other possible pairs.

This fitness function penalizes solutions in which strong

overlaps occur between non-adjacent fragments in the layouts.

The objective of F2 is to minimize the overlap score. The

overlap score in both F1 and F2 is computed using the semi-

global dynamic programming algorithm [5]. In genetic

algorithms, operators are applied to a population of individuals

to create a new population. In the assembler, three such

operators are employed: selection, crossover, and mutation.

Ranking selection mechanism is used, in which the GA first

Journal of Applied Physics and Engineering Vol.1, No.1 (2016)10-16

12

Selected paper: International Conference On Computing (NECICC-2k15)

sorts the individuals based on their fitness values and then

selects the individuals with the best fitness score until the

specified population size is reached.

2. DNA Fragment Assembly Using The Greedy Algorithm

The Greedy Algorithm is based on the Best Set of

Maximum Weight Contigs Approach [4]. The algorithm

considers unknown orientation and missing fragments. The first

step of the algorithm is to construct the Best Set of Maximum

Weight Contigs (BSC). The complexity of this step is O(n2 l 2),

where n is the number of fragments and l is the average length

of fragments. The second step of the algorithm is to order the

Maximum Weight Contigs (MWC) of BSC based on contig

overlaps order. The complexity of this step is O(m2 l 2), where

m is the number of MWCs. The Greedy Algorithm computes

contig overlaps rather than fragment overlaps. The advantages

are twofold: it enables us to take only the true overlaps into

account and it gives a better guarantee for finding the orientation

of the fragments.

The major steps of Greedy Algorithm are:

A) Construction of BSC: The algorithm takes as input a

set of fragments and outputs a best set of contigs stored in a

vector template. The linked list template and the vector template

are the major data structures used in this step. The linked list is

composed of the overlap scores sorted in descending order. Each

item contains a pair of fragment IDs and their overlap score. The

first fragment is from the forward direction and the second

fragment is the reverse complement of another fragment that has

overlap length above some threshold with the first fragment.

The vector represents a set of contigs. Each Contig object

contains a pair of fragments and their overlap weight.

B) Ordering of Contigs: The time complexity of this

step is O(m2 l 2), where m is the number of contigs and l is the

average length of the fragments. The algorithm takes as input

the best set of contigs (output of the first step) and outputs a list

representing the contigs ordering. The algorithm makes use of a

vector representing the contigs information (the output of the

first step).

3. DNA Fragment Assembly using Structured Pattern

Matching:

The Structured Pattern Matching Algorithm is based on

a technique called hybridization fingerprinting that is usually

used by biologists to deduce the overlap information among

DNA clones from biological probes. DNA clones are exact

copies of a particular part of a genome and are much longer than

fragments [8]. To tackle the DNA fragment assembly problem,

This algorithm divides the task into three phases. The first phase

is called probe matching. Instead of using biological probes,

short probes (e.g. 12 bps) are randomly selected from each

fragment. Then exact pattern matching is used in determining

the relative positions (i.e. probes occurrences) of the input

fragments, including their reverse complements. Thus, each

fragment is represented as an ordered set of probes and

associated interprobe distances rather than a sequence of

nucleotides. The second phase is called overlap map

construction. It constructs a detailed map to show how

fragments are ordered and how they align. The algorithm first

determine how fragments overlap based on the probes

occurrences obtained from the previous phase. Contigs

consisting of a set of fragments are then constructed in a greedy

fashion, guided by a heuristic measure of fragment alignments.

However, it does not solely rely on scoring pairwise fragment

alignments; instead, each fragment is dynamically scored

against each contig. Comparing a fragment to a contig exploits

the multiple coverage characteristics of shotgun sequencing

data. The third phase is called sequence determination. It is

relatively straightforward since all the information we need is

available from the second phase. The time complexity of the

Structured Pattern Matching algorithm is approximately linear

in the length of the target sequence. The efficiency is due to the

compact encoding representation of fragments.

The three phases of the algorithm are:

1) Probe matching to identify probe occurrences in input

fragments. It takes as input a set of DNA fragments and each

fragment’s reverse complement. The output of this phase

consists of fragments represented as ordered set of probe

occurrences and not of nucleotides (as with other traditional

algorithms).

2) Overlap map construction: Once the probes are selected and

detected, the Structured Pattern Matching algorithm greedily

constructs an overlap map based on the patterns of probe

occurrences information obtained in the previous step.

The following steps describe the overview of the overlap map

construction:

Step 1: Construct a pairwise overlap table that records overlap

lengths for all possible pairs.

Step 2: Select the fragment pair with the highest score and

construct an initial contig containing just these two fragments.

Journal of Applied Physics and Engineering Vol.1, No.1 (2016)10-16

13

Selected paper: International Conference On Computing (NECICC-2k15)

 Step 3: The new contig is added to the set of contigs and

rescored against all remaining fragments.

Step 4: The process continues, adding the bestscoring fragment

to the contig and updating the modified contig’s scores against

all remaining fragments. If no fragment exhibits a significant

overlap score, the process terminates, and a new contig is

constructed.

 3) Sequence determination. Once the overlap map is completed,

a consensus sequence is generated using all the available

information. The time complexity is linear. From the overlap

map, the order of the fragments is known in each contig and it

is also known that their relative left positions occur in the map,

which makes the sequence determination straightforward.

4. DNA Fragment Assembly using the Clustering

Heuristic Algorithm

The traditional three steps: overlap, layout, and consensus,

are used in this algorithm. We use the semiglobal alignment

algorithm to find all possible pairwise overlaps. When the

overlaps are determined, we use a greedy heuristic in the layout

phase to find the multiple sequence alignment among a set of

fragments. We take the pair of fragments with highest overlap as

the starting point. The layout is constructed by successively

adding the fragment that has the highest overlap with the

assembled fragments. This algorithm takes the unknown

orientation into account [14]. The idea is based on the clustering

concept. It means that the fragment that is newly added into the

alignment has the best overlap with either the last fragment or

with the first fragment in the current alignment. Each fragment

is progressively added into the existing alignment until no

fragment is left.

 In what follows, the main parts of the Clustering Heuristic

Algorithm are described.

Step 1: Construct a score table for all possible pairs of fragments

considering forward directions and reverse complements.

 Step 2: Sort the score in descending order and insert all

FragmentPair objects (a pair whose score is above some

threshold) into a linked list. Each FragmentPair node contains a

pair of fragment IDs and overlap score. If the score is positive, it

indicates that both fragments are from the same strand. A

negative score means that the two fragments are from different

strands.

Step 3: Select the first node (a,b) in the linked list as a starting

point to order the rest of the fragments. Set a to be the first

fragment and b to be the last fragment in the current layout.

Step 4: Select the next node in the linked list and compare the

pair of fragments with the first and the last fragments in the

current layout. If the clustering is successful, the fragment ID

joins the set. If it needs to be inserted in the front, then reset the

first fragment in the layout. If it needs to be appended at the end,

then reset the last fragment in the layout. Otherwise, put the

node in a temporary sorted linked list. The process continues

until the current linked list is traversed. Note that only one

possible direction for each fragment can be chosen.

Step 5: When the current linked list is being traversed, a new

contig is created. Remove the nodes that contain IDs in the

selected fragment set from the temporary linked list. Next, reset

the temporary linked list as the current linked list and continue

from Step 3 until no more fragments are left. Each contig

contains the list of ordered fragment IDs.

5. Nature inspired algorithms to solve DNA fragment

assembly problem:

A) The Problem of DNA Fragment Assembly Using Ant Colony

Optimization: Ant colony optimization (ACO) approach was

proposed by Meksangsouy, P. and Chaiyaratana; N. [9] which is

an asymmetric ordering representation where a path, co-

operatively generated by all ants in the colony represents the

search solution. The optimality of the fragment layout obtained

International Journal on Bioinformatics & Biosciences (IJBB)

Vol.2, No.2, June 2012 48 is then determined from the sum of

overlap scores calculated for each pair of consecutive fragments

in the layout. Two types of assembly problem are investigated:

single-contig and multiple-contig problems. The simulation

results indicate that in single-contig problems, the performance

of the ant colony system algorithm is approximately the same as

that of a nearest neighbor heuristic algorithm. On the other hand,

the ant colony system algorithm outperforms the nearest

neighbor heuristic algorithm when multiple-contig problems are

considered. Zhao Y. and et al. [17] improved sequence

alignment method based on the ant colony algorithm. This new

method could avoid a local optimum and remove especially the

paths scores of great difference by regulating the initial and final

positions of ants and by modifying pheromones in different

times. Zuwairie Ibrahim and Tri Basuki Kurniawan, [18] in their

approach model the DNA sequence design as a path-finding

problem, which consists of four nodes, to enable the

Journal of Applied Physics and Engineering Vol.1, No.1 (2016)10-16

14

Selected paper: International Conference On Computing (NECICC-2k15)

implementation of the ACS and compared their results with

other methods such as the genetic algorithm.

B) DNA Fragment Assembly Based on Particle Swarm

Optimization:

 There are few literatures available which represent solution for

DNA Sequence Assembly problem using meta heuristic and

nature inspired algorithms. PSO algorithm comes under nature

inspired algorithm and it has been proven as an effective

optimization technique to solve any optimization problems for

optimum result. PSO algorithm can also be used to solve

computational biology problem to give better result than the

conventional methods. Ravi Vikas and Sanjay [12] proposed a

solution for DNA sequence assembly problem using Particle

Swarm Optimization (PSO) with Shortest Position Value (SPV)

rule. DNA sequence assembly problem is a discrete

optimization problem, so there is need of discrete optimization

algorithm to solve it. It is a continuous version of PSO with SPV

rule to solve the DNA sequence assembly problem. SPV rule

transforms continuous version of PSO to discrete version.

C) Cuckoo search algorithm:

Cuckoo search algorithm is one of the most recently defined

meta-heuristic algorithms proposed by Yang & Deb (2009,

2010). It has been developed by simulating the intelligent

breeding behaviour of cuckoos [15] [16]. It is a population-

based search procedure used as an optimization tool, in solving

complex optimization problems. Cuckoos lay their eggs in the

nests of other host birds with incredible abilities like selecting

the recently spawned nests and eliminating existing eggs that

enhance hatching probability of their eggs. The host bird takes

care of the eggs presuming that the eggs are its own. However,

some of host birds are able to combat with this parasitic

behaviour of Cuckoos, and throw out the identified alien eggs or

build their new nests in new locations. Each egg in a nest

represents a solution, and a Cuckoo’s egg represents a new

solution. When generating a new solution Levy flight is

performed [13].

 The three ideal rules for CS are described as follows:

 (i) Each Cuckoo lays one egg at a time, and deposits it in a

randomly chosen nest.

 (ii) The best nests with high quality of eggs will carry over to

the next generations.

(iii) The number of available host nests is fixed and there is a

probability that a host can discover an alien egg. In this case, the

host bird can either throw the egg away or abandon the nest to

build a completely new nest in a new location.

III. Conclusion

 The DNA fragment assembly is a very complex problem in

computational biology. Since the problem is NP-hard, the

optimal solution is extremely difficult to find. Hence, there are

many computational techniques that attempt to find good

solutions for this problem. In this work, we studied four

different algorithms in detail. The algorithms use different

techniques to tackle the DNA fragment assembly problem. For

smaller data sets, all algorithms got the same result in

approximately the same running time. However, the results and

the performance vary as the data sets become larger. For larger

data sets, i.e., 50 or more fragments, the performance of the

algorithms ranking from best to worst is: Structured Pattern

Matching Algorithm, Clustering Heuristic Algorithm, Genetic

Algorithm, and finally the Greedy Algorithm. Although the

algorithms were influenced by techniques and algorithms that

are found in the literature, the design and implementations

observed in this work vary from the original algorithms. Many

features advanced by the authors of the original algorithms were

either ignored or completely modified by the design and

implementations considered in this work. Therefore, the

conclusions made by this work are valid only for our

interpretations.

References

[1] Burks C (1994), “DNA sequence assembly, Engineering in Medicine and

Biology Magazine”, IEEE, Vol. 13, pp. 771- 773.
[2] Chandrasekaran K and Simon S P 2012 Multi-objective scheduling problem:

Hybrid approach using fuzzy assisted cuckoo search algorithm. Swarm and

Evolutionary compution 5: 1–16
[3] Cooper NG (1994), “The Human Genome Project: Deciphering the Blueprint

of Herediry”, University Science Books, Mill Valley, CA.

[4] Elloumi M and Kaabi S 1999 Exact and approximation algorithms for the
DNA sequence assembly problem. SCI in Biology and Medicine 8

[5] Enrique Alba and Gabriel Luque (2008) , “ A Hybrid Genetic Algorithm for

the DNA Fragment Assembly Problem”, Recent advances in Evolutionary
Computation for combinatorial optimization Studies in computational

Intelligence, Vol. 153, pp. 101-112, Springer.

 [6] E.W. Myers (2000), “Towards simplifying and accurately formulating
fragment assembly”, Journal of Computational Biology, Vol. 2, pp. 275–

290.

[7] Fang, S.C., Wang, Y. and Zhong J (2005), “A Genetic Algorithm Approach

to Solving DNA Fragment Assembly Problem”, Journal of Computational

and Theoretical Nanoscience, Vol. 2, pp. 499- 505.

[8] Kim, S. and Segre, A. M (1999), “AMASS: A structured pattern matching
approach to shotgun sequence assembly”, Journal of Computational

Biology, 6(2), pp. 163-186.
[9] Meksangsouy, P. and Chaiyaratana, N (2003), “DNA fragment assembly

using an ant colony system algorithm”, Evolutionary Computation, Vol. 3,

pp. 1756- 1763.

Journal of Applied Physics and Engineering Vol.1, No.1 (2016)10-16

15

Selected paper: International Conference On Computing (NECICC-2k15)

[10] Parsons, R.J., Forrest, S. and Burks C (1995), “Genetic algorithms,
operators, and DNA fragment assembly”, Machine Learning, Vol. 21, pp.

11- 33.

 [11] Parsons R.J. and Johnson M.E (1995), “DNA sequence assembly and
genetic algorithms- new results and puzzling insights”, Proceedings of the

Third International Conference on Intelligent Systems for Molecular

Biology (ISMB-95), pp. 277- 284.
[12] Ravi, Vikas and Sanjay (2011), “DNA Sequence Assembly using Particle

Swarm Optimization”, International Journal of Computer Applications

Vol.28- No.10, pp. 33-38.
[13] R Indumathy, S Umamaheswari and G Subhasini 2015, “Nature inspired

novel cuckoo search algorithm for genome sequence assembly” pp 1-14,

Indian Academy of Sciences.
[14] Tammi, M. T. (2003), “The Principles of Shotgun Sequencing and

Automated Fragment Assembly”, Center for Genomics and Bioinformatics,

Karolinska Institute, Stockholm, Sweden.
[15] Yang X-S and Deb S 2009 Cuckoo search via Lévy flights. In Proc. of

World Congress on Nature & Biologically Inspired Computing, (NaBIC

2009), IEEE Publications, USA, pp. 210–214
[16] Yang X-S and Deb S 2010 Engineering optimization by Cuckoo search. Int.

J. Mathematical Modeling and Numerical Optimization 1: 330–343

 [17] Zhao, Y and et al (2008), “An Improved Ant Colony Algorithm for DNA
Sequence Alignment”, International Symposium on Information Science

and Engineering, pp. 683—688.

Journal of Applied Physics and Engineering Vol.1, No.1 (2016)10-16

16

