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Abstract—Most of existing sequence mining algorithms focuses 

on mining for subsequences. A large class of applications, such as 

biological DNA and protein motif mining requires efficient 

mining of “approximate” patterns that are contiguous. Very few 

existing algorithms that can be applied to find such contiguous 

approximate patterns. Such algorithms having drawbacks like 

poor scalability, lack of guarantees in finding the pattern, and 

difficulty in adapting to other applications.  

In this paper, we present a new algorithm called FLexible and 

Accurate Motif DEtector (FLAME). FLAME is a flexible suffix-

tree-based algorithm that can be used to find frequent patterns 

with a variety of definitions of motif (pattern) models. It is also 

accurate, as it always finds the pattern if it exists. Using both real 

and synthetic data sets, we demonstrate that FLAME is fast, 

scalable, and outperforms existing algorithms on a variety of 

performance metrics. In addition, based on FLAME, we also 

address a more general problem, named extended structured 

motif extraction, which allows mining frequent combinations of 

motifs under relaxed constraints. 

I. INTRODUCTION 

In a number of sequential data mining applications, the 

goal is to discover frequently occurring patterns. The 

challenge in discovering such patterns is to allow for some 

noise in the matching process. This approximate subsequence 

mining problem is of particular importance in computational 

biology, where the challenge is to detect short sequences, 

usually of length 615, that occur frequently in a given set of 

DNA or protein sequences. These short sequences can provide 

clues regarding the locations of so called “regulatory regions,” 

which are important repeated patterns along the biological 

sequence.  

The repeated occurrences of these short sequences are not 

always identical, and some copies of these sequences may 

vary from others. These frequently patterns are called motifs 

in computational biology. In the rest of this paper, we use this 

term to describe frequently occurring approximate sequences. 

Different applications require different similarity models 

to suit the kind of noise that they deal with. It is desirable for a 

motif mining algorithm to be able to deal with a variety of 

notions of similarity. In this paper, we present a powerful new 

model for approximate motif mining that fits several 

applications with varying notions of approximate similarity. 

We also present FLexible and Accurate Motif DEtector 

(FLAME)—novel motif mining algorithms which can 

efficiently find motifs that satisfy our model.The problem of 

finding frequently occurring (noncontiguous) subsequences in 

large sequence databases has been extensively studied in 

previous works. Traditionally, B is called a subsequence of A, 

if B can be constructed by projecting out some of the elements 

of sequence A. For instance, if A is the sequence 

“a,b,a,c,b,a,c,” the sequence “a,b,b,c” is a subsequence 

constructed by choosing the first, second, fifth, and seventh 

elements from the original sequence and omitting the rest. 

While mining for frequent non-contiguous sub sequences have 

many issues. 

II. RELATED WORK 

Many surveys of literature on mining databases for 

frequent patterns have been done. Early work focused on 

mining association rules. The problem of mining for 

subsequences was introduced and has several applications, 

and many algorithms like SPADE, BIDE and several others 

have been proposed as improvements over existing one. The 

repeated occurrences of these short sequences are not always 

identical, and some copies of these sequences may differ from 

others.    

  The similarity metric that is used here could be 

complex—for example, when comparing proteins, a similarity 

matrix like PAM [1] or BLOSUM [2], may be used for 

comparing the “distance” between each symbol (protein) pair. 

Yang et al used a statistical sampling-based method with a 

compatibility matrix to find patterns in the presence of noise. 

However, they primarily focus on subsequence mining, while 

we focus on contiguous patterns. Early work focused on 

mining association rules. We note that the problem of motif 
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mining is related to the problem of mining for frequent item 

sets [3]. 

Some subsequence mining algorithms allow certain 

constraints. Constraints which limit the maximum gap 

between two items in the subsequence make it possible to use 

these algorithms to mine for contiguous patterns. The problem 

of mining for subsequences was introduced in [4]. 

Furthermore, they tend to be inefficient even when used for 

exact substring mining. FLAME, on the other hand is 

extremely efficient even for approximate substrings. 

The vast body of work in bioinformatics for finding 

patterns in long noisy DNA sequences can be divided into two 

classes—pattern-based and statistical based. The pattern based 

algorithms typically search through the space of potential 

patterns and find a motif that satisfies the minimum support. 

This method is primarily focused at finding pairs (or sets) of 

motifs that co-occur in the data set within a short distance of 

each other. Subsequence mining has several applications, and 

many algorithms like SPADE [5], BIDE [6], and CloSpan [7] 

(and several others) have been proposed. 

This method only considers a simple mismatch-based 

definition of noise, and does not consider other more complex 

motif models such as a substitution matrix or a compatibility 

matrix. These optimizations make FLAME faster by an order 

of magnitude. Zhu et al proposed an algorithm for mining 

approximate substrings but it only accommodates the 

Hamming distance model. Similarly, Rajasekaran et al 

propose an algorithm for solving an instance of the motif 

mining problem where wildcard characters are allowed but it 

also uses the Hamming distance model. Other approaches are 

developed for the planted motif search problem, where it is 

known a priori that an instance of the motif is included in 

every sequence of the data set. These can also accommodate 

only the Hamming distance measure. 

  Yang et al. [8] use a statistical sampling-based 

method with a compatibility matrix to find patterns in the 

presence of noise. However, they primarily focus on 

subsequence mining, while we focus on contiguous patterns. 

YMF [9] is a simple algorithm that computes statistical 

significance of each motif. YMF scales very poorly with 

increasing complexity of motifs, and thus cannot be easily 

adapted to other applications Weeder [10] is suffix-tree-based 

algorithm that makes certain assumptions about the way the 

mismatches in an instance of the motif are distributed. This 

makes Weeder extremely fast, but it is not guaranteed to 

always find the motif. 

Weeder too, cannot be adapted for other motif 

models. MITRA [11] is a mismatch tree-based algorithm 

which uses clever heuristics to prune the large space of 

possible motifs. MITRA is very resource intensive and 

requires large amounts of memory. The Random Projections 

algorithm of Buhler and Tompa [12] has recently been applied 

to time series data for motif mining, to search for frequent 

patterns in the data. All of these approaches run the risk of 

finishing and may not be able to find the right motif. There are 

several applications of motif mining in addition to those 

mentioned above. It is often the first step in discovering 

association rules in sequence data (“basic shapes” in [13] and 

“frequent patterns” in [14]). It can also be used to find good 

seeds for clustering sequence data sets [15]. Records of 

medical signals, like ECG or respiratory data from patients 

can also be mined to find signals that can indicate a 

potentially critical condition. 

III. THE MODEL 

Critical aspect of the motif mining problem is 

defining the model under which two or more sequences are 

considered to match (approximately). Developing such models 

faces an interesting challenge: On the one hand, we want a 

model that is robust enough to detect the occurrence of a 

pattern even in the presence of noise, and on the other hand, 

we do not want it to be so general that it matches unrelated 

subsequences. Since different applications may have different 

criteria for how to strike this balance, a natural approach is to 

develop a flexible model with a few intuitive parameters that 

can be set by the user based on the application characteristics. 

In this section, we present a new model for motifs that can be 

used for pattern mining in many different domains. 

We call our motif model the L;M;s;k model after the four 

parameters that determine it. L is the length of the motif, M is 

a distance matrix that is used to compute the similarity 

between two strings, s is the maximum distance threshold 

within which two strings are considered similar, and finally, k 

is the minimum support required for a pattern to qualify as a 

motif. 

The L;M;s;k model is very sensitive and permits the 

user a lot of flexibility in making the right trade-off between 

specificity and noise tolerance of a model. As we describe 

below, much of this power comes from the ability to use any 

matrix M as the distance matrix. 

The matrix M allows us to define a distance penalty 

when a symbol X in the model matches a symbol Y in the data 

sequence. The penalty is specified by M(X,Y), an entry in the 

matrix. The total distance between the two strings is computed 

by summing the distance penalties of the corresponding 
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symbols. That is, if A ¼ a1a2a3 ...an and B ¼ b1b2b3 ...bn are two 

strings, then the distance between them. By using these strings 

we can determine required motifs according to the given 

input. 

Formally speaking, a string S is L;M;s;k motif if 

there exist at least k strings T1;...;Tk in the database . Every 

string S that satisfies the above is an L;M;s;k motif. Note that 

the string S need not actually appear in the database for it to 

qualify as a motif. Only the instances Ti need to be in the 

database. 

Protein motif mining is an example of a domain     

which requires a matrix-based measure of similarity. Finding 

regions in protein sequences that appear frequently in different 

proteins is useful in inferring the functional sites in proteins. 

As in the case of DNA, the patterns in protein sequences do 

not repeat exactly. The instances of the pattern usually differ 

from the model in a few positions. To complicate things 

further, not all mismatches are equally bad. Some amino acids 

are very similar to each other, while some are very different. 

For instance, Alanine and Valine are both hydrophobic amino 

acids, while Glycine and Serine are both hydrophilic. The 

matrix can be used to award a small penalty for M(X,Y) when 

X and Y are similar (Alanine and Valine, for instance) and a 

larger penalty otherwise ( say, Alanine and Glycine) . Popular 

substitution matrices such as PAM and BLOSUM  can easily 

be used in our model. The matrix can be adapted to allow 

other kinds of models. In fact, the matrix approach lets us 

simulate any Lp-norm (Manhattan distance, Euclidean 

distance, etc.). If we wanted to match two sequences only if 

the corresponding values (in the two sequences) were within 

two units of each other. In general, any measure that can be 

computed in an incremental fashion by comparing the 

symbols in the corresponding positions can be simulated by 

constructing an appropriate distance penalty matrix. Note that 

our model does not allow insertion and deletion events. In 

general, suffix trees work best for matching when the lengths 

are the same. We now discuss two special cases of the 

L;M;s;k model that are commonly used in computational 

biology and other domains—the L;d;k and L;f;d;k models. 

3.1 Special Case: The L;d;k Model The L;d;k model is a 

mismatch-based model commonly used in computational 

biology for finding DNA motifs. The distance measure 

between two strings is the Hamming distance, or merely the 

number of mismatches. In the L;d;k model, (d) denotes the 

maximum Hamming distance, and (L) and (k) are as per our 

model. It follows as a special case of our model by setting s ¼ 

d and using 1 for all non-diagonal entries of (M). 

One of the applications of this model is in the field of 

computational biology. The L;d;k model and its derivatives 

have been considered a good fit for DNA regulatory motifs. 

Briefly, the related problem of using this model to find 

regulatory motifs in DNA is as follows: Biologists today are 

interested in understanding how different genes in the genome 

are regulated and the way they interact with each other. To 

this end, biologists often study genes that exhibit similar 

expression patterns to extract clues about the proteins that 

control their expression. It is believed that genes that are co 

regulated by the same protein (called a transcription factor) 

share some signal that allows the transcription factor to 

recognize the gene and turn it on. This signal is usually 

present in the region upstream of a gene (within a few 

thousand base pairs) called the promoter region. The signature 

is usually a short string of DNA 6-15 bases long. As is often 

the case in biology, these signatures are seldom identical, and 

differ in a few positions from one gene promoter region to 

another.  

Finding this noisy signature that is common across 

all the genes is a very important step toward locating the 

binding site for the transcription factor. Modeling the set of 

promoter regions as our database, and the signature binding 

site as an L;d;k pattern, we can simply apply the FLAME 

algorithm to solve this problems. In most practical situations, 

we don’t know the exact value of L, and therefore, we might 

have to try several values. In the case of DNA regulatory 

patterns, we know that the signature is usually between 6 to 15 

bases long, and therefore we can try these lengths with 

varying number of mismatches. 

 

A suffix tree on the string ABBCACCB. The counts are indicated inside the 

node. 

In general, this model is useful in applications where 

the noise has a positional bias as it allows us to be more 

specific in finding the right patterns while ignoring extraneous 

matches. Some DNA motif finding applications  use models 

that are somewhat similar to the L;f;d;k model. 
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IV.EXISTING SYSTEM 

The algorithm we developed for the extended 

structured motif extraction problem is based on the techniques 

described above. Given a p-structured model M1M2 ...Mp, in 

the first step of the algorithm, we run FLAME on the 

enhanced suffix tree for every simple Li;Mi;si;k model, that 

constitutes the p-structured model. 

 

                                  The FLAME algorithm. 

The algorithm we developed for the extended 

structured motif extraction problem is based on the techniques 

described above. Given a p-structured model M1M2 ...Mp, in 

the first step of the algorithm, we run FLAME on the 

enhanced suffix tree for every simple Li;Mi;si;ki model, that 

constitutes the p-structured model. After every run, we get a 

set of qualifying motifs that match the model, the 

corresponding occurrences and the Boolean arrays. By using 

the techniques described,  we compute for each run of 

FLAME all the Motif Existential arrays and the Model 

Existential array.At the end of this phase, we have p Model 

Existential Boolean arrays, one for each simple model 

component. The fact that this algorithm uses FLAME as a 

building block, makes our technique general and flexible. It is 

possible to use different types of models for each simple motif 

and different distance measures. For example, we could use a 

L;M;s;k model for the first motif and a L;f;d;k for the second 

or two L;M;s;k models with different substitution matrices. 

V. PROPOSED STSTEM 

SPRINT (Scalable Parallelizable Induction of 

Decision Tree) Algorithm. SPRINT is Decision- tree based 

Algorithm.  Motif mining can be done in parallel, means we 

can mine more number of Patterns at a time. Divide the 

dataset among N share-nothing machines Categorical data: 

just divide it evenly numerical data: use a parallel sorting 

algorithm to sort the data. It stands for scalable parallelizable 

induction of decision tree algorithm. It was introduced by 

Shafer et al in 1996. It is fast, scalable decision tree classifier. 

It is not based on Hunt’s algorithm in constructing the 

decision tree, rather it partitions the training data set 

recursively using breadth-first greedy technique until each 

partition belong to the same leaf node or class.  

It can be implemented in both serial and parallel 

pattern for good data placement and load balancing. It uses 

two data structure: attribute list and histogram which is not 

memory resident making sprint suitable for large data sets, 

thus it removes all the data memory restrictions on data. It 

handles both continuous and categorical attributes.. 

VI. CONCLUSION 

In this paper, we presented a powerful new model: 

L;M;s;k for motif mining in sequence databases. The L;M;s;k 

model subsumes several existing models and provides 

additional flexibility that makes it applicable in a wider 

variety of data mining applications. We also presented 

FLAME, a flexible and accurate algorithm that can find 

L;M;s;k motifs. Through a series of experiments on real and 

synthetic data sets, we demonstrate that FLAME is a versatile 

algorithm that can be used in several real motif mining tasks.  

Having problems like no sorting technique to sort sequential 

patterns and difficult to adopt to other applications we 

approached new algorithm SPRINT.  The goal was to develop 

a decision tree classification algorithm that was robust, 

scalable, and parallelizable. 
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