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Abstract—The rapid growth of wireless content access 
implies the need for content placement and scheduling at 
wireless base stations. We study a system under which users are 
divided into clusters based on their channel conditions, and 
their requests are represented by different queues at logical 
front ends. Requests might be elastic or inelastic 
correspondingly, we have request queues that indicate the 
number of elastic requests, and deficit queues that indicate the 
deficit inelastic service. Caches are of finite size and can be 
refreshed periodically from a media vault. We consider two 
cost models that correspond to inelastic requests for streaming 
stored content and real-time streaming of events, respectively. 
We design provably optimal policies that stabilize the request 
queues (hence ensuring finite delays) and reduce average deficit 
to zero [hence ensuring that the quality-of-ser- vice (QoS 
)target is met]at small cost. We illustrate our approach through 
simulations. 

 

Index    Terms—Content     distribution    network    (CDN), 
delay-sensitive traffic, prediction, quality of service (QoS), 
queuing, buffering. 

I.INTRODUCTION 

     The past few years have seen the rise of smart hand held 

wireless devices as a means of content consumption .Content 

might include streaming applications in which chunks of the 

file must be received  under hard delay constraints, as well as 

file downloads such as software updates that do not have such 

hard constraints. The core of the Internet is well provisioned, 

and network capacity constraints for content delivery area the 

media vault (where content originates) and at the wireless 

access links at end-users. Hence a natural location to place 

caches for a content distribution network (CDN) would beat 

the wireless gateway, which could be a cellular base station 

through which users obtain network access.  

    Network between the caches to the users has finite ca- 

pacity;2)each cache can only host a finite amount of content; 

and3)refreshing content in the caches from the media vault 

incurs a cost. Users can make two kinds of requests, namely: 

1) elastic requests that have no delay constraints, and2) 

inelastic requests that have a hard delay 

 
 

Fig.1. Wireless content distribution. 

 

     An abstraction of such a network is illustrated in 

Fig.1.There are multiple cellular base stations (BSs), each of 

which has a cache in which to store content. The content of 

the caches can be periodically refreshed through accessing a 

media vault. We divide users into different clusters, with the 

idea that all users in each cluster are geographically close 

such that they have statistically similar channel conditions 

and are able to access the same base stations. Note that 

multiple clusters could be present in the same cell based on 

the dissimilarity of their channel conditions to different base 

stations. There quests made by each cluster are aggregated 

at a logical entity that we call a frontend (FE) associated 

with that cluster. The frontend could be running on any of 

the devices in the cluster or at a base station, and its purpose 

is to keep track of the requests associated with the users of 

that cluster. The following constraints affect system 

operation:1)the wireless For inelastic requests, we adopt the 
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model proposed wherein users request chunks of content 

that have a strict dead line, and the request is dropped if the 

dead line cannot be met. The idea here is to meet a certain 

target delivery ratio which could be something like“90%of 

all requests must be met to ensure smooth play out.”Each 

time an inelastic request is dropped, a deficit queue is 

updated by an amount proportional to the delivery ratio. We 

would like the average value of the deficit to be zero. In this 

paper, we are interested in solving the joint content 

Placement and scheduling problem for both elastic and 

inelastic traffic in wireless networks. 

 

A.Related Work 

 

     The problem of caching and content scheduling has earlier 

been studied for online Web caching and distributed storage 

systems. A commonly used metric is a competitive ratio of 

misses, assuming an adversarial model.  Examples of work in 

this context. Load balancing and placement with linear 

communication costs are examined. Here, the objective is to 

use distributed and centralized integer programming 

approaches to minimize the costs. However, this work does 

not take account for network capacity constraints, delay 

sensitive traffic. 

     The techniques that we will employ are based on the 

literature on scheduling schemes. Tassiulas et al. proposed the 

Max Weight scheduling algorithm for switches and wireless 

networks in their seminal work. They proved that this policy 

is throughput-optimal and characterized the capacity region of 

the single-hop networks as the convex hull of all feasible 

schedules. These papers explore the delays in the system for 

single downlink with variable connectivity, multi rate links, 

and multi hop wireless flows. However, these do not consider 

content distribution with its attendant question of content 

placement. Closest to our work in which, however, only 

considers elastic traffic and has no results on the value of 

prediction. 

 

 B. Main Results 

 

    In this paper, we develop algorithms for content 

distribution with elastic and inelastic requests. We use a 

request queue to implicitly determine the popularity of elastic 

content. Similarly, the deficit queue determines the necessary 

service for inelastic requests. Content may be refreshed 

periodically at caches. We study two different kinds of cost  

models, each of which is appropriate for a different content  

• We first characterizes the capacity region of the system and 

develop feasibility constraints that any stabilizing algorithm 

must satisfy. Here, by stability we mean that elastic request  

queues have a finite mean, while inelastic deficit values are 

zero on average. 

• We develop a version of the max-weight scheduling 

algorithm that we propose to use for joint content placement 

and scheduling. We show that it satisfies the feasibility 

constraints and, using a Lyapunov argument, also show that it 

stabilizes the system of the load within the capacity region. 

As a by-product, we show that the value of knowing the 

arrival rates is limited in the case of elastic requests, while it 

is not at all useful in the inelastic case. 

• We next study another version of our content distribution 

problem with only inelastic traffic, in which each content has 

an expiration time. We assume that there is a cost for 

replacing each expired content chunk with a fresh one. For 

this model, we first find the feasibility region and, following a 

similar technique to develop a joint content placement and 

scheduling algorithm that minimizes the average expected 

cost while stabilizing the deficit queues. 

• We illustrate our main insights using simulations on a 

simple wireless topology and show that our algorithm is 

indeed capable of stabilizing the system. We also propose two 

simple algorithms, which are easily implementable, and 

compare their performance to the throughput-optimal scheme. 

II. SYSTEM MODEL 

 

     There is a set of base stations M and each base station is 

associated with a cache.  we let N denote the set of these 

clusters. Also, as discussed in the Introduction, there are front 

ends in each cluster, also denoted   n € N by whose purpose is 

to aggregate requests from the users. Time is slotted, and we 

divide time into frames consisting of D time-slots. Requests 

are made at the beginning of each frame. There are two types 

of users in this system inelastic and elastic based on the type 

of requests that they make. Requests made by inelastic users 

must be satisfied within the frame in which they were made. 

Elastic users do not have such a fixed deadline, and these 

users arrive, make a request, are served, and depart. 

         The base stations employ multiple access schemes (e.g., 

OFDMA), and hence each base station can support multiple 

simultaneous unicast transmissions, as well as a single 

broadcast transmission. It is also possible to study other 

scenarios (e.g., multicast transmissions to subsets of users) 

using our framework. We adopt a slow-fading packet erasure 

model for the wireless channels. Accordingly, the channel 

between cache m and user u(or front end n) is modeled as a 

Stochastic ON- OFF process   

     Content is partitioned into two disjoint sets of inelastic 

content I and elastic content E .We denote the set of inelastic 

users by u€U At the beginning of each frame , each inelastic 

user makes at most one request . The idea is that an inelastic 

request must either be satisfied by the end of the frame or 

dropped. Inelastic requests are served using broadcast 

transmissions. We model this request by a Bernoulli process 

with the mean value λu.  
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 au(k)=1,with probability λu 

  

 au(k)=0,with probalbilty 1- λu  (1) 

 

     Note that while the Bernoulli process models an inelastic 

request for each user, the distribution of the requests over 

different content types can be chosen arbitrarily. Since there 

are limited resources in the system, all requests cannot be 

served. In order to provide enough service to each user, we 

need to decide on a minimum delivery ratio for inelastic 

users. The delivery ratio is the proportion of inelastic requests 

that are served, and hence the expected service required by 

user u is nu λu , in which nu  is the minimum acceptable 

delivery ratio. This model follows that of [2] and is consistent 

with the idea that streaming media can tolerate a fraction of 

chunk losses, but has hard delay constraints on the received 

chunks. 

We further assume that arrivals are independently and 

identically distributed over frames. An elastic request that 

does not get served during a frame will be enqueued and wait 

for the service during the next frames. However, we need to 

make sure that the request queue lengths in each cluster 

remain bounded as time passes so that the delay does not 

become unboundedly large. Thus, we require that the 

expected elastic service for content in cluster is. Furthermore, 

in order to ensure that these requests are not served with 

infinite periodicity, we assume that each must be served using 

a unicast transmission.  

     Each cache m has a finite capacity of chunks of content. In 

what follows, constraint is to consider different timescales for 

cache reloading and request arrivals. Hence, lower capacity 

can be modeled as a slower timescale for refreshing cache 

contents. For simplicity, we use the same timescale (i.e., 

frames) for request arrivals and refreshing cache contents. 

Hence, base stations can reload their caches with new content 

at the beginning of each frame. The same framework can be 

used to study the general case at the expense of more 

computational complexity. In Section V, we explicitly model 

the reloading cost for a variation of our caching model. For 

this model, we assume the content of the       caches expires 

and will not be useful at the end of each frame. However, 

placing each chunk in a cache induces a cost. Therefore, in 

order to reduce the cost, we may occasionally choose to 

reload a cache partially and not  

 

ІІІ PURE UNICAST ELASTIC SCENARIO 
 

     In this section, we assume there are only requests for 

elastic content. As noted in Section II, these requests are to be 

served using unicast communications. For notational 

convenience, we assume that transmissions are between base 

stations and front ends, rather than to the actual users making 

the requests. We first determine the capacity region, which is 

the set of all feasible requests. Note that this model, in which 

front ends have independent and distinct channels to the 

caches, differs from the previously studied wired caching 

systems (see, e.g., [13]) because the wireless channels are not 

always ON. Therefore, the placement and scheduling must be 

properly coordinated according to the channel states. 

A. Capacity Region 

 

Let 𝑝𝑒
𝑚(k) € {0, 1} denote the presence of content e € E at 

cache m,  that is  𝑝𝑒
𝑚(k) =1 if e is present in cache m at frame 

k , and  𝑝𝑒
𝑚(k) =0,otherwise. The cache capacity constraint 

requires each cache to satisfy 

 

∑ 𝑝𝑒
𝑚(k) ≤ v𝑒∈𝐸       for each frame k (2) 

 

The scheduled service to content e at front end  n, which is 

provided by cache m  during frame  k, is indicated using 

sn,e
m (k). The actual service depends on the presence of the 

corresponding content and the corresponding channel state, 

and one can verify that would be sn,e
m (k) pe

m(k) ce
m( k). Note 

that ∑ sn,e
m (k) ≤ D e because each channel can transmit at most 

one chunk during a time-slot, when it is ON, and each frame 

consists of slots. In general pe
m(k) and  se

m(k) , and may 

follow the joint distribution of some random processes and at 

each frame . Since the processes of request arrivals and 

channel states are assumed to be i.i.d. over frames, it suffices 

(for the purpose of defining the capacity region) to only 

consider stationary processes, which are independent of time. 

In order to achieve the capacity region, the content placement 

and service scheduling rely on the realization of the channel 

states.  
TABLE 1 

SUMMARY OF NOTATION 
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   Therefore, the processes  𝑝𝑒
𝑚(k) 𝑐𝑒

𝑚( k).  and depend on 𝑐𝑒
𝑚( 

k).   and can be accordingly denoted by 𝑠𝑛,𝑒
𝑚 (k) 𝑝𝑒

𝑚(k) 𝑐𝑒
𝑚( k).  

. A necessary and sufficient condition on (strict) feasibility of 

the set of requests{λn,e:n€N,e€E} can be expressed as 

follows: 

 

 
 

where denotes the expectation. Our objective is to provide 

placement and scheduling algorithms that can fulfill any set 

of strictly feasible requests. 

 

B. Value of Prediction 

 

 Suppose we know the statistics of the elastic requests, i.e., 

the values of are known. The question is whether this 

information would help in designing a throughput-optimal 

caching and scheduling scheme. Using the capability to 

predict requests, we could potentially decide on the elastic 

content distribution scheme a priori. Notice that this is  

 

Equivalent to solving (3) to find the appropriate joint 

distribution of the content placement and the service 

schedule. The solution would yield a set of caching and 

scheduling choices, and a probability with which to use each 

one based on channel realizations.While such an algorithm is 

very simple to implement, solving (3) for the set of 

schedules is quite hard. Consequently, we see that prediction  

of the elastic requests has limited value in the context of 

devising appropriate content distribution algorithms. We will 

see in Section IV that prediction is even less useful for the 

case of inelastic requests.  

 

C. Throughput-Optimal Scheme 

 

Since it is hard to realize an offline prediction, placement 

and scheduling scheme, we now study our system of elastic 

requests in a queueing context. The development here is 

similar to the traditional switch scheduling problem, as 

relevant to our model. We assume the elastic requests in 

cluster go through a set of request queues whose lengths at 

frame are denoted by for each content , and follow the 

dynamic 

  

                    𝑞𝑛,𝑒(k+1)= 𝑞𝑛,𝑒(k)+𝑎𝑛,𝑒(k)- 𝑠𝑛,𝑒(k)               (4) 

 

where , 𝑠𝑛,𝑒(k)-min(𝑞𝑛,𝑒(k+)∑m sn,e
m (k) pe

m(k) ce
m( k). and 

 𝑞𝑛,𝑒(k+1)= 𝑞𝑛,𝑒(k)+𝑎𝑛,𝑒(k) Note sn,e
m (k)  that is the total 

number of requests for content at front end that are served 

during frame k . One can verify that 

 

 
 

The evolution of these request queues can be studied by a 

Markov chain @, whose state at each frame is the vector 

of   (𝑞𝑛,𝑒(k):e  € E n € N)   If n @ is shown to be stable 

(positive recurrent) under some policy , then for all k  , and 

subsequently [from (5)] 

 

 

 
 

 
 

in which cn
m.   values denote the channel states during this 

frame and are given. 

 

Service scheduling: 

For each cache m  and front end n , determine the optimal 

Schedule( sn,e
m ) *as follows: 
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Thus, the capacity of the link between cache m and front end 

n  is completely devoted to serve one of the contents 

(randomly chosen) that maximizes pf
m(k)*  cn

mq n f.  . 

where is the average expected service, and hence the requests 

for content at front end are fulfilled using policy . Our 

objective in this section is to find such a policy , which 

determines the scheduled service and the content placement 

for each frame , and results in being stable for any set of 

feasible requests. Next, we will present a content placement 

and a service scheduling scheme in Algorithm 1. 

Theorem 1 verifies the throughput optimality of these 

policies. 

Theorem 1: The placement and scheduling scheme in 

Algorithm 1 can fulfill any set of requests satisfying the 

conditions in (3). Therefore, the proposed scheme is= 

throughput-optimal. 

Proof: We will show the stability of Markov chain using 

The  Lyapunov criterion [15]. Consider the candidate 

Lyapunov function. We will show that for any set of strictly 

feasible requests, the scheme in Algorithm 1 will result in an 

expected drift ∆ v(k)= 

 
 

which is negative except in a finite subset of the state space. 

The expected drift can be written as 

 

 
in which (a) follows since , 𝑠𝑛,𝑒(k)-min(𝑞𝑛,𝑒(k+)∑m sn,e

m (k) 

pe
m(k) ce

m( k) , and B is shown to have a finite value (please 

refer to Appendix-A). 

 

We will show (in Appendix-B) the optimal values(pe
m)* and 

(sn,e
m )* chosen by Algorithm 1 are indeed the solution to the 

following problem: 

 

 
Consequently, 

 
 

For any set of values pe
mand (sn,e

m ) ,satisfying the constraints 

in (7). Specifically, these values can be chosen as the random 

processes, [defined in (3)]. Hence, we have 

 
 

in which the expectation is with respect to the distribution of 

(cn,e
m )  , and random processes  (pn,e

m ) (cn
m)and(sn,e

m ) (cn,e
m ) , 

and follows from (3) for a sufficiently small . Considering the 

above relation in the right hand side (RHS) of results in a drift 

 

 
which is negative for large enough queue length values q n,e , 

and the Lyapunov theorem implies the stability of the request 

queues. 

 

In Section IV, we will see that the case of inelastic requests is 

different and the prediction has even less significance on the 

scheduling of the inelastic content distribution network. 

  

IV. JOINT ELASTIC-INELASTIC SCENARIO 

 In this section, we study the general case where elastic and 

inelastic requests coexist in the system. Recall that the elastic 

requests are assumed to be served through unicast 

communications between the caches and front ends, while the 

base stations broadcast the inelastic contents to the inelastic 

users. We further assumed servers can employ OFDMA 

method to simultaneously transmit over their single broadcast 

and multiple unicast channels. Although these two types of 

traffic do not share the access medium, all the content must 

share the common space in the caches. Consequently, we 
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require an algorithm that jointly solves the elastic and 

inelastic scheduling problems. In this section, we first 

determine the general capacity region of the system and then 

present our algorithm. 

 

A. Joint Elastic-Inelastic Capacity Region 

 

 Similar to the case of elastic content, we use pi
m(k) to 

denote the presence of inelastic content  i € I in cache 

during frame . Since the channel states do not change 

during a frame, and there is at most one request (a u, i(k) € 

{0,1} for inelastic content by each user , each cache may 

schedule to broadcast content at most once per frame. We 

let  sn,e
m  € {0,1}represent this scheduled service for frame. 

Note that each cache can broadcast at most contents during 

a frame, hence we require 

 

 
 

The actual inelastic service, provided to user u for content 

i, depends not only on the channel states and the cache 

presence, but also on whether there is a new (not expired) 

request for content . It should be straightforward to verify 

that the total actual inelastic service provided to user u  

during frame  k is 

 

 
 

For each frame k, we also denote the vector of all request 

arrivals by 

 

 
The channel states using 

 
 And the scheduled service and placement by  

 

 
Note that a legitimate schedule  S(k) must satisfy 

 

 
 

Since the channel states and the request arrivals are 

identically and independently distributed over frames, 

following the same argument as in [16], we can formally 

define the capacity region of the joint elastic and inelastic 

system based on the existence of a randomized stationary 

policy. 

 

 

Definition 1 (Capacity Region of the Joint Scenario): 

 

 A set of elastic requests and inelastic requests (with 

corresponding expected delivery ratios) are (strictly) feasible 

if the following holds. There exists a policy that, during each 

frame, given and , chooses a schedule among all legitimate 

schedules with respect to a probability distribution , such that 

 

 
where the expectation is over the randomness of the arrival 

processes, channel states, and the probability distribution 

P(S(k) |A(k), C(k)) 

. 

B. Joint Throughput-Optimal Scheme 

 

In Section III, we studied the elastic traffic using request 

queues . For the inelastic requests, we now define a deficit 

queue for each user that captures the accumulated 

unhappiness of the user about the provided inelastic service. 

denotes the length of the corresponding deficit queue at frame 

and follows 

 

where with probability , and it is zero otherwise. Note that the 

deficit queue is a virtual queue whose length can be negative. 

A negative length shows up when the provided inelastic 

service is greater than the required service.  
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We will present a joint scheme in Algorithm 2 that can 

stabilize the requests queues and the (positive part of) 

deficit queues for any feasible set of requests Therefore 

 

 
Hence, the joint scheme can fulfill all feasible inelastic 

requests in addition to also satisfying all elastic requests. It 

is possible to simplify this algorithm by noting that we 

only need to 

 
 

cache content that is scheduled to be served in a frame. We 

present a simplified version of Algorithm 2 in Appendix-D 

for completeness. 

Theorem 2: The joint scheme in Algorithm 2 is throughput 

optimal. That is, it can fulfill any set of strictly feasible 

elastic and inelastic request. In the proof of this theorem 

(see Appendix-C), we show that by applying Algorithm 2, 

the deficit and request queues are stable. Therefore, the 

corresponding Markov chain is positive recurrent and 

converges to a unique steady state. 

The following corollary (refer to Appendix-E for the 

proof) 

provides a bound on the queue lengths at the steady state. 

Corollary 1: Sum of the average request and deficit queue 

lengths at the steady state satisfies 

 

 
for some  € > 0 that determines how close to the boundary 

of the capacity region the requests are. 

  We now discuss whether prediction is useful in the case 

of inelastic traffic. The service to an inelastic user is 

subject to the existence of a new unexpired request. In case 

there is a valid request, we can only reduce the deficit of a 

user by at most 1 unit. In other words, even if a user’s 

deficit is large, it cannot be reduced by a large amount by 

scheduling that user multiple times during a frame. This 

property of inelastic traffic reduces the value of request 

prediction in the sense that the content placement and 

scheduling must be done in a complete accordance to the 

realization of the channel states as well as the new request 

arrivals. Hence, planning for the cache placement of the 

inelastic content cannot be performed in advance. 

Moreover, the capacity region of the inelastic content 

distribution network in general has a complicated form (as 

in Lemma 1), which requires dealing with probability 

distributions. As a result, even foreseeing the required 

amount of cache resources is not straightforward. Hence, 

we conclude that prediction of arrival rates for inelastic 

traffic is of marginal value. 

 

V. INELASTIC CACHING WITH CONTENT EXPIRY 

 

     In this section, we study an inelastic caching problem 

where the contents expire after some time. In this new 

model, which is compatible with real-time streaming of live 

events, we only 

    consider inelastic traffic and assume that the lifetime of 

an inelastic content is equal to the length of a frame. Hence, 

we can cache a content only for the duration of a frame 

after which the content will not be useful any longer. 

     We propose a new model for cache refresh cost that is 

consistent with this scenario, in which loading a cache 

during frame incurs a cost of per content. is a random 

variable identically and independently distributed over 

frames, with the average of for all . The total cost of 

replacing new contents in the caches, at frame , is denoted 

by , where 

 

 
and denotes the presence of a fresh chunk of content in 

cache for the th frame. Our objective is to find a policy 

that stabilizes the deficit queues in the system at the 

minimum long-time average expected cost of cache 

replacement . 

The following lemma indicates the existence of a 

randomized stationary policy that can fulfill any set of 

feasible requests at the minimum average cost. 

Lemma 3: For any set of feasible inelastic requests, there 

exists a randomized stationary policy such that at frame , 

given the arrivals , channel states , and the costs , itchooses 
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a legitimate schedule according to a probability 

distribution 

 
On average, R* provides enough service, that is 

 

 
at the minimum average expected cost . 

The above expectations are with respect to the randomness of 

the request arrivals, loading costs, channel states, and the 

probability distribution used by policy . The proof follows the 

same argument as in [14] and is omitted for brevity. 

 

A.Minimum-Cost Throughput-Optimal Policy 

 

 Following a similar queueing analysis as in the previous 

sections, we consider a deficit queue for each user u . Our 

objective is to find a policy that stabilizes these deficit queues 

while minimizing the average cost. To achieve this goal, our 

framework is to minimize an upper bound on expected 

(Lyapunaov drift +cost) at each frame. The resulting scheme 

is presented in Algorithm 3, and Theorem 4 evaluates its 

performance. 

Theorem 4: The proposed scheme stabilizes the deficit queues 

for any set of feasible requests, and hence is throughput 

optimal. Moreover, it incurs a long-time average expected 

cost that deviates from the minimum cost by an amount less 

than 
|𝑢|

  2𝑌
 

 

 
Observation 1: By increasing the control parameter , we 

can achieve an average expected cost that is arbitrarily 

close to the minimum cost. However, this will potentially 

lead to larger expected deficit queue lengths. Hence, there 

is a tradeoff between the cost and the average deficit queue 

lengths. 

Proof: Consider the Lyapunov function as mentioned 

before, we will try to minimize an upper bound on the 

expected sum of the Lyapunov drift and cost 

 

 
 

 
 

Where Y >0 is a control parameter to trade off cost with 

performance. 

  From the analysis in appendix-c we have 

 

 
 

At each frame k, given the arrival s,channel states and the 

costs  ᵧm (k), we minimize 

 

  
Overall legitimate schedules to get pi

m(k) and su (k).therfore, 

we will have  

 

Where the right-hand side is what the randomized stationary 

Policy R* achieves. If the requests are strictly feasible, then 

for 

All u ∑ € > 0  ,Ȇ *[Su(k)] >nu λ u +€ such that . Considering 

this fact and in (23) and (21) gives 
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Where  V(k)  is the value of the Lypaunov function at frame k  

when we use our proposed schedule. It is clear that for large 

enough values, the expected drift is negative, and hence the 

scheme is stabilizing the deficit queues. Note that (24) holds 

for any frame . We take expectation from both sides of this 

inequality,with respect to the distribution of the deficit queues 

, to get 

 

 
 

Assume the initial deficit queue lengths are zero i.e., 

V(0)=0 

Now sum both sides of(25) from k = 0 to k = k and divide 

by k+1 to get 

 

 
 

By letting K tend to infinity and nothing that E[v(K+1)] is 

a bounded positive value for each K, we get  

 

 
  

 

 

Note that in the studied model, we may fetch a fresh chunk 

of content at frame only if it is scheduled to be served 

because otherwise it gets expired and becomes useless by 

the end of this frame. Therefore  pi
m(k) = si

m(k) , and the 

optimization in (22) can be simplified to the one presented 

in Algorithm 3. 

 

VI. SIMULATION 

 

 In this section, we use MATLAB simulations of a 

wireless content distribution network to evaluate the 

performance of: 1) the proposed throughput-optimal 

algorithms; 2) a suboptimal decomposed scheme; and 3) a 

distributed greedy policy. The simulated CDN is an 

example of the one shown in Fig. 1 with the following 

specifications. There are |M|=3 caches, |N|=4 clusters, |U| 

= 12 and inelastic users. The capacity of each cache is v = 

3, and D = 4 is the duration of a frame. Each user requires 

a delivery ratio of nu = 0.9 and has a request rate of λu 

content/frame. The popularity of inelastic requests is 

uniformly distributed among |I|= 12 different types of 

inelastic content. There are a total of |E| elastic contents, 

for each there is a binomial Bin(4,0.2) number of requests 

in each cluster (i.e., λ n,e=0.8 ). We further assume the 

packet erasure probability of each wireless channel is 25%. 

The mean delivery ratio (average over all users, denoted 

by ǹ*) and the mean elastic service rate (denoted by s *el ) 

provided by Algorithm 2 are presented in Table II for 

different numbers 

 
Algorithm 4: Decomposed Elastic-Inelastic Scheduling and 

Placement Scheme 

Given the statistics of the requests and channel states, divide 

the available cache capacity to  v to v E and v –v E 

Elastic traffic: 

Allocate vE of the caches’ capacity to elastic contents and use 

Algorithms 1 for service scheduling and content placement of 

the elastic requests. 

Inelastic traffic: 

At the beginning of frame , given the deficit queue lengths, 

arrivals and the channel states, let . du=du(k)+∑ i au,I (k) 

Solve the following maximization problem to find the optimal 

inelastic schedule: 

 

 

ISSN Number (online): 2454-9614

South Asian Journal of Engineering and Technology (SAJET)

Vol.2, No.5

25



 

 

 

 Of elastic contents (denoted by |E|). As expected, by 

increasing, |E|, the performance drops. We saw, in Section IV, 

that a throughput-optimal scheme must jointly decide on 

elastic and inelastic scheduling and dynamically allocate the 

cache spaces to these two types of traffic based on the 

channel states and new request arrivals. This will result in a 

fairly complex optimization problem as in Algorithm 2. In 

Algorithm 4, we propose a simple (suboptimal) scheme that 

divides the cache spaces for different types of content a 

priori. Following this static cache resource allocation, the 

scheduling of inelastic and elastic requests can be completely 

decomposed, and the (sub) optimal schedule can be found 

 
TABLE IV 

PERFORMANCE OF ALGORITHM 

 

 
 

Algorithm 5: Decentralized Greedy Joint scheme 

Each cache m places the content and schedules the service 

independently from the other caches by solving the 

following: 

 

 
 

In Table III, we observe that the reduction of the 

performance in Algorithm 4 is at most 4%–6% compared 

to Algorithm 2. It is worth noting that when the elastic 

requests are not achievable due to wireless channel 

constraints (e.g., for|E|=10,12 in Table II), separating 

inelastic and elastic scheduling can actually be beneficial. 

As seen in Table III, there is up to 2% improvement in the 

provided inelastic service for these cases. Essentially, by 

devoting a fixed proportion of the cache capacities to 

inelastic content, we ensure that long elastic request 

queues will not cause the scheduler allocate excess cache 

space to elastic content. As mentioned earlier, Algorithm 2 

can be very hard to implement in large networks. 

Therefore, we propose a distributed greedy scheme 

(Algorithm 5), whose performance is evaluated in Table  

In this algorithm, each cache, independent of the others, 

loads and serves content. The simulation results suggest 

that although the greedy algorithm is not throughput-

optimal, the performance loss is limited to at most  ~ 15% 

compared to the throughput-optimal scheme.  

Finally, we study the performance of Algorithm 3, which 

is aimed toward real-time streaming. The results are 

presented in Table V. Here, we use a trade off parameter   

Y that determines how much we value refresh cost versus 

throughput.  As expected, the average provided delivery 

ratio decreases with the trade off   parameter Y, while 

increasing Y causes the average Cost decrease and 

converge to its minimum value. 

 

VII. CONCLUSION 

 

 In this paper, we studied algorithms for content placement 

and scheduling in wireless broadcast networks. While 

there has been significant work on content caching 

algorithms, there is much less on the interaction of caching 

and networks. Converting the caching and load balancing 

problem into one of queuing and scheduling is hence 

interesting. We considered a system in which both 

inelastic and elastic requests coexist. Our objective was to 

stabilize the system in terms of finite queue lengths for 

elastic traffic and zero average deficit value for the 

inelastic traffic. We showed how an algorithm that jointly 

performs scheduling and placement in such a way that 

Lyapunov drift is minimized is capable of stabilizing the 

system. In designing these schemes, we showed that 

knowledge of the arrival process is of limited value to 

taking content placement decisions. We incorporated the 

cost of loading caches in our problem with considering 

two different models. In the first model, cost corresponds 

to refreshing the caches with unit periodicity. In the second 

model relating to inelastic caching with expiry, we directly 

assumed a unit cost for replacing each content after 

expiration. A max-weight-type policy was suggested for 

this model, which can stabilize the deficit queues and 

achieves an average cost that is arbitrarily close to the 

minimum cost. 
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    APPENDIX 

 

A. Bounds on the constant term in the Lyapunov drift 

(Theorem 1) 

 For the ease of notation, let 

 

Hence, 

 
For the drift expression in the proof of theorem 1, it is 

straight forward to verify  

 

 

 
 

Where (a) follows from 

  

 

                  
And (b) holds because ∑ e (sn,e

m )(k) < D 

 

B. Simplified Implementation of algorithm I 

 

We show that (pn,e
m )*, (sn,e

m )* ,values chosen by algorithm  

Are the optimal values for the following problem: 

 
Suppose that pn,e

m (k)=, pn,e
m (k)* (satisfying ∑e (pn,e

m )(k) <v) 

Are given we can now separately solve (30) for each cache 

m and front endn to find  (sn,e
m )* 

 

  

 
One can verify the optima l value of the objective function 

is Dcn
m(k) max f € E (pf

m)*q n,f ). Which can be achieved 

by? 

 
Next, we observe the optimal (pf

m)* values must be chosen 

such that 

      

          
Is maximized .It is straight forward to see such (pf

m)* 

values can also be derived from solving the problem 

 

C.Throughput optimality of Algorithm 2  

 

Consider the joint Lyapunov function (k) =VE(k)+VI(k) 

where 

 

 
And vE (k) is defined  as in the proof of theorem 1.the 

expected drift ∆ V(k) =E[v(K+1)-V(k)|qn,e,du(k+)=du] can 

be written 
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And we have already shown (proof of theorem 1) that 

 
The expected in elastic drift can also be bounded as 

follows: 

 

 
 

In which (a) follows since ({X+Y)+)2<({x}+y)2,and B’’ 

has a finite value 

 

 
Consequently, the following bound holds for the joint 

drift: 

 

 
At the beginning of each frame k , the scheme in 

Algorithm 2 chooses the schedule S*(k) by solving (17).  

 
where the expectation is taken over all legitimate schedules 

S(k) with respect to the distribution used by the policy P* 

.Taking expectation from both sides of the above inequality 

over the arrival and channel state processes and using (13) 

will result in (for a small enough  € >0) 

 
Considering the above inequality in(32) concludes 

 
Thus, the expected drift is negative for large enough queue 

lengths, and hence the queues will be stable using the scheme 

in Algorithm 2. 

 

D. Simplified Implementation of Algorithm 2 

 

Note that in the current model, we assumed that the caches 

can refresh their content at the beginning of each frame. 

Hence, we only need to cache a chunk of content at frame if it 

is scheduled to be served. Therefore, we let pi
m (k)= 

si
m(k) and simplify the maximization in Algorithm 2 as 

follows: 

 

E. Proof of corollary 1 

 

We have shown, using the Lyapunov analysis, that the 

Markov chain of the deficit and request queues is positive 

recurrent (stable).  

 

 

 
Note that E[V(k+1)]-E[v(k)] holds at the steady state ,and 

hence 
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From (31) and (29) we know 

 
And the proof will follow by considering the above bound 

in (34) 
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