

Scheduling and Buffering the Content in

Wireless Networks over the CDNs
#1 Kancharla Bhanu Kumar, #2 Maddirala Syam, #3Sk.Abdul Rasheed

1M.Tech Student, NEC, Narasaraopet

Guntur Dist, A.P, India
2, 3 Asst.Professor, NEC, Narasaraopet,

Guntur Dist, A.P, India
1 Bhanu.kumar567@gmail.com

2 syam.jnsa@gmail.com

3 rasheed4321@gmail.com

Abstract—The rapid growth of wireless content access
implies the need for content placement and scheduling at
wireless base stations. We study a system under which users are
divided into clusters based on their channel conditions, and
their requests are represented by different queues at logical
front ends. Requests might be elastic or inelastic
correspondingly, we have request queues that indicate the
number of elastic requests, and deficit queues that indicate the
deficit inelastic service. Caches are of finite size and can be
refreshed periodically from a media vault. We consider two
cost models that correspond to inelastic requests for streaming
stored content and real-time streaming of events, respectively.
We design provably optimal policies that stabilize the request
queues (hence ensuring finite delays) and reduce average deficit
to zero [hence ensuring that the quality-of-ser- vice (QoS
)target is met]at small cost. We illustrate our approach through
simulations.

Index Terms—Content distribution network (CDN),
delay-sensitive traffic, prediction, quality of service (QoS),
queuing, buffering.

I.INTRODUCTION

 The past few years have seen the rise of smart hand held

wireless devices as a means of content consumption .Content

might include streaming applications in which chunks of the

file must be received under hard delay constraints, as well as

file downloads such as software updates that do not have such

hard constraints. The core of the Internet is well provisioned,

and network capacity constraints for content delivery area the

media vault (where content originates) and at the wireless

access links at end-users. Hence a natural location to place

caches for a content distribution network (CDN) would beat

the wireless gateway, which could be a cellular base station

through which users obtain network access.

 Network between the caches to the users has finite ca-

pacity;2)each cache can only host a finite amount of content;

and3)refreshing content in the caches from the media vault

incurs a cost. Users can make two kinds of requests, namely:

1) elastic requests that have no delay constraints, and2)

inelastic requests that have a hard delay

Fig.1. Wireless content distribution.

 An abstraction of such a network is illustrated in

Fig.1.There are multiple cellular base stations (BSs), each of

which has a cache in which to store content. The content of

the caches can be periodically refreshed through accessing a

media vault. We divide users into different clusters, with the

idea that all users in each cluster are geographically close

such that they have statistically similar channel conditions

and are able to access the same base stations. Note that

multiple clusters could be present in the same cell based on

the dissimilarity of their channel conditions to different base

stations. There quests made by each cluster are aggregated

at a logical entity that we call a frontend (FE) associated

with that cluster. The frontend could be running on any of

the devices in the cluster or at a base station, and its purpose

is to keep track of the requests associated with the users of

that cluster. The following constraints affect system

operation:1)the wireless For inelastic requests, we adopt the

ISSN Number (online): 2454-9614

South Asian Journal of Engineering and Technology (SAJET)

Vol.2, No.5

17

model proposed wherein users request chunks of content

that have a strict dead line, and the request is dropped if the

dead line cannot be met. The idea here is to meet a certain

target delivery ratio which could be something like“90%of

all requests must be met to ensure smooth play out.”Each

time an inelastic request is dropped, a deficit queue is

updated by an amount proportional to the delivery ratio. We

would like the average value of the deficit to be zero. In this

paper, we are interested in solving the joint content

Placement and scheduling problem for both elastic and

inelastic traffic in wireless networks.

A.Related Work

 The problem of caching and content scheduling has earlier

been studied for online Web caching and distributed storage

systems. A commonly used metric is a competitive ratio of

misses, assuming an adversarial model. Examples of work in

this context. Load balancing and placement with linear

communication costs are examined. Here, the objective is to

use distributed and centralized integer programming

approaches to minimize the costs. However, this work does

not take account for network capacity constraints, delay

sensitive traffic.

 The techniques that we will employ are based on the

literature on scheduling schemes. Tassiulas et al. proposed the

Max Weight scheduling algorithm for switches and wireless

networks in their seminal work. They proved that this policy

is throughput-optimal and characterized the capacity region of

the single-hop networks as the convex hull of all feasible

schedules. These papers explore the delays in the system for

single downlink with variable connectivity, multi rate links,

and multi hop wireless flows. However, these do not consider

content distribution with its attendant question of content

placement. Closest to our work in which, however, only

considers elastic traffic and has no results on the value of

prediction.

 B. Main Results

 In this paper, we develop algorithms for content

distribution with elastic and inelastic requests. We use a

request queue to implicitly determine the popularity of elastic

content. Similarly, the deficit queue determines the necessary

service for inelastic requests. Content may be refreshed

periodically at caches. We study two different kinds of cost

models, each of which is appropriate for a different content

• We first characterizes the capacity region of the system and

develop feasibility constraints that any stabilizing algorithm

must satisfy. Here, by stability we mean that elastic request

queues have a finite mean, while inelastic deficit values are

zero on average.

• We develop a version of the max-weight scheduling

algorithm that we propose to use for joint content placement

and scheduling. We show that it satisfies the feasibility

constraints and, using a Lyapunov argument, also show that it

stabilizes the system of the load within the capacity region.

As a by-product, we show that the value of knowing the

arrival rates is limited in the case of elastic requests, while it

is not at all useful in the inelastic case.

• We next study another version of our content distribution

problem with only inelastic traffic, in which each content has

an expiration time. We assume that there is a cost for

replacing each expired content chunk with a fresh one. For

this model, we first find the feasibility region and, following a

similar technique to develop a joint content placement and

scheduling algorithm that minimizes the average expected

cost while stabilizing the deficit queues.

• We illustrate our main insights using simulations on a

simple wireless topology and show that our algorithm is

indeed capable of stabilizing the system. We also propose two

simple algorithms, which are easily implementable, and

compare their performance to the throughput-optimal scheme.

II. SYSTEM MODEL

 There is a set of base stations M and each base station is

associated with a cache. we let N denote the set of these

clusters. Also, as discussed in the Introduction, there are front

ends in each cluster, also denoted n € N by whose purpose is

to aggregate requests from the users. Time is slotted, and we

divide time into frames consisting of D time-slots. Requests

are made at the beginning of each frame. There are two types

of users in this system inelastic and elastic based on the type

of requests that they make. Requests made by inelastic users

must be satisfied within the frame in which they were made.

Elastic users do not have such a fixed deadline, and these

users arrive, make a request, are served, and depart.

 The base stations employ multiple access schemes (e.g.,

OFDMA), and hence each base station can support multiple

simultaneous unicast transmissions, as well as a single

broadcast transmission. It is also possible to study other

scenarios (e.g., multicast transmissions to subsets of users)

using our framework. We adopt a slow-fading packet erasure

model for the wireless channels. Accordingly, the channel

between cache m and user u(or front end n) is modeled as a

Stochastic ON- OFF process

 Content is partitioned into two disjoint sets of inelastic

content I and elastic content E .We denote the set of inelastic

users by u€U At the beginning of each frame , each inelastic

user makes at most one request . The idea is that an inelastic

request must either be satisfied by the end of the frame or

dropped. Inelastic requests are served using broadcast

transmissions. We model this request by a Bernoulli process

with the mean value λu.

ISSN Number (online): 2454-9614

South Asian Journal of Engineering and Technology (SAJET)

Vol.2, No.5

18

 au(k)=1,with probability λu

 au(k)=0,with probalbilty 1- λu (1)

 Note that while the Bernoulli process models an inelastic

request for each user, the distribution of the requests over

different content types can be chosen arbitrarily. Since there

are limited resources in the system, all requests cannot be

served. In order to provide enough service to each user, we

need to decide on a minimum delivery ratio for inelastic

users. The delivery ratio is the proportion of inelastic requests

that are served, and hence the expected service required by

user u is nu λu , in which nu is the minimum acceptable

delivery ratio. This model follows that of [2] and is consistent

with the idea that streaming media can tolerate a fraction of

chunk losses, but has hard delay constraints on the received

chunks.

We further assume that arrivals are independently and

identically distributed over frames. An elastic request that

does not get served during a frame will be enqueued and wait

for the service during the next frames. However, we need to

make sure that the request queue lengths in each cluster

remain bounded as time passes so that the delay does not

become unboundedly large. Thus, we require that the

expected elastic service for content in cluster is. Furthermore,

in order to ensure that these requests are not served with

infinite periodicity, we assume that each must be served using

a unicast transmission.

 Each cache m has a finite capacity of chunks of content. In

what follows, constraint is to consider different timescales for

cache reloading and request arrivals. Hence, lower capacity

can be modeled as a slower timescale for refreshing cache

contents. For simplicity, we use the same timescale (i.e.,

frames) for request arrivals and refreshing cache contents.

Hence, base stations can reload their caches with new content

at the beginning of each frame. The same framework can be

used to study the general case at the expense of more

computational complexity. In Section V, we explicitly model

the reloading cost for a variation of our caching model. For

this model, we assume the content of the caches expires

and will not be useful at the end of each frame. However,

placing each chunk in a cache induces a cost. Therefore, in

order to reduce the cost, we may occasionally choose to

reload a cache partially and not

ІІІ PURE UNICAST ELASTIC SCENARIO

 In this section, we assume there are only requests for

elastic content. As noted in Section II, these requests are to be

served using unicast communications. For notational

convenience, we assume that transmissions are between base

stations and front ends, rather than to the actual users making

the requests. We first determine the capacity region, which is

the set of all feasible requests. Note that this model, in which

front ends have independent and distinct channels to the

caches, differs from the previously studied wired caching

systems (see, e.g., [13]) because the wireless channels are not

always ON. Therefore, the placement and scheduling must be

properly coordinated according to the channel states.

A. Capacity Region

Let 𝑝𝑒
𝑚(k) € {0, 1} denote the presence of content e € E at

cache m, that is 𝑝𝑒
𝑚(k) =1 if e is present in cache m at frame

k , and 𝑝𝑒
𝑚(k) =0,otherwise. The cache capacity constraint

requires each cache to satisfy

∑ 𝑝𝑒
𝑚(k) ≤ v𝑒∈𝐸 for each frame k (2)

The scheduled service to content e at front end n, which is

provided by cache m during frame k, is indicated using

sn,e
m (k). The actual service depends on the presence of the

corresponding content and the corresponding channel state,

and one can verify that would be sn,e
m (k) pe

m(k) ce
m(k). Note

that ∑ sn,e
m (k) ≤ D e because each channel can transmit at most

one chunk during a time-slot, when it is ON, and each frame

consists of slots. In general pe
m(k) and se

m(k) , and may

follow the joint distribution of some random processes and at

each frame . Since the processes of request arrivals and

channel states are assumed to be i.i.d. over frames, it suffices

(for the purpose of defining the capacity region) to only

consider stationary processes, which are independent of time.

In order to achieve the capacity region, the content placement

and service scheduling rely on the realization of the channel

states.
TABLE 1

SUMMARY OF NOTATION

ISSN Number (online): 2454-9614

South Asian Journal of Engineering and Technology (SAJET)

Vol.2, No.5

19

 Therefore, the processes 𝑝𝑒
𝑚(k) 𝑐𝑒

𝑚(k). and depend on 𝑐𝑒
𝑚(

k). and can be accordingly denoted by 𝑠𝑛,𝑒
𝑚 (k) 𝑝𝑒

𝑚(k) 𝑐𝑒
𝑚(k).

. A necessary and sufficient condition on (strict) feasibility of

the set of requests{λn,e:n€N,e€E} can be expressed as

follows:

where denotes the expectation. Our objective is to provide

placement and scheduling algorithms that can fulfill any set

of strictly feasible requests.

B. Value of Prediction

 Suppose we know the statistics of the elastic requests, i.e.,

the values of are known. The question is whether this

information would help in designing a throughput-optimal

caching and scheduling scheme. Using the capability to

predict requests, we could potentially decide on the elastic

content distribution scheme a priori. Notice that this is

Equivalent to solving (3) to find the appropriate joint

distribution of the content placement and the service

schedule. The solution would yield a set of caching and

scheduling choices, and a probability with which to use each

one based on channel realizations.While such an algorithm is

very simple to implement, solving (3) for the set of

schedules is quite hard. Consequently, we see that prediction

of the elastic requests has limited value in the context of

devising appropriate content distribution algorithms. We will

see in Section IV that prediction is even less useful for the

case of inelastic requests.

C. Throughput-Optimal Scheme

Since it is hard to realize an offline prediction, placement

and scheduling scheme, we now study our system of elastic

requests in a queueing context. The development here is

similar to the traditional switch scheduling problem, as

relevant to our model. We assume the elastic requests in

cluster go through a set of request queues whose lengths at

frame are denoted by for each content , and follow the

dynamic

 𝑞𝑛,𝑒(k+1)= 𝑞𝑛,𝑒(k)+𝑎𝑛,𝑒(k)- 𝑠𝑛,𝑒(k) (4)

where , 𝑠𝑛,𝑒(k)-min(𝑞𝑛,𝑒(k+)∑m sn,e
m (k) pe

m(k) ce
m(k). and

 𝑞𝑛,𝑒(k+1)= 𝑞𝑛,𝑒(k)+𝑎𝑛,𝑒(k) Note sn,e
m (k) that is the total

number of requests for content at front end that are served

during frame k . One can verify that

The evolution of these request queues can be studied by a

Markov chain @, whose state at each frame is the vector

of (𝑞𝑛,𝑒(k):e € E n € N) If n @ is shown to be stable

(positive recurrent) under some policy , then for all k , and

subsequently [from (5)]

in which cn
m. values denote the channel states during this

frame and are given.

Service scheduling:

For each cache m and front end n , determine the optimal

Schedule(sn,e
m) *as follows:

ISSN Number (online): 2454-9614

South Asian Journal of Engineering and Technology (SAJET)

Vol.2, No.5

20

Thus, the capacity of the link between cache m and front end

n is completely devoted to serve one of the contents

(randomly chosen) that maximizes pf
m(k)* cn

mq n f. .

where is the average expected service, and hence the requests

for content at front end are fulfilled using policy . Our

objective in this section is to find such a policy , which

determines the scheduled service and the content placement

for each frame , and results in being stable for any set of

feasible requests. Next, we will present a content placement

and a service scheduling scheme in Algorithm 1.

Theorem 1 verifies the throughput optimality of these

policies.

Theorem 1: The placement and scheduling scheme in

Algorithm 1 can fulfill any set of requests satisfying the

conditions in (3). Therefore, the proposed scheme is=

throughput-optimal.

Proof: We will show the stability of Markov chain using

The Lyapunov criterion [15]. Consider the candidate

Lyapunov function. We will show that for any set of strictly

feasible requests, the scheme in Algorithm 1 will result in an

expected drift ∆ v(k)=

which is negative except in a finite subset of the state space.

The expected drift can be written as

in which (a) follows since , 𝑠𝑛,𝑒(k)-min(𝑞𝑛,𝑒(k+)∑m sn,e

m (k)

pe
m(k) ce

m(k) , and B is shown to have a finite value (please

refer to Appendix-A).

We will show (in Appendix-B) the optimal values(pe
m)* and

(sn,e
m)* chosen by Algorithm 1 are indeed the solution to the

following problem:

Consequently,

For any set of values pe
mand (sn,e

m) ,satisfying the constraints

in (7). Specifically, these values can be chosen as the random

processes, [defined in (3)]. Hence, we have

in which the expectation is with respect to the distribution of

(cn,e
m) , and random processes (pn,e

m) (cn
m)and(sn,e

m) (cn,e
m) ,

and follows from (3) for a sufficiently small . Considering the

above relation in the right hand side (RHS) of results in a drift

which is negative for large enough queue length values q n,e ,

and the Lyapunov theorem implies the stability of the request

queues.

In Section IV, we will see that the case of inelastic requests is

different and the prediction has even less significance on the

scheduling of the inelastic content distribution network.

IV. JOINT ELASTIC-INELASTIC SCENARIO

 In this section, we study the general case where elastic and

inelastic requests coexist in the system. Recall that the elastic

requests are assumed to be served through unicast

communications between the caches and front ends, while the

base stations broadcast the inelastic contents to the inelastic

users. We further assumed servers can employ OFDMA

method to simultaneously transmit over their single broadcast

and multiple unicast channels. Although these two types of

traffic do not share the access medium, all the content must

share the common space in the caches. Consequently, we

ISSN Number (online): 2454-9614

South Asian Journal of Engineering and Technology (SAJET)

Vol.2, No.5

21

require an algorithm that jointly solves the elastic and

inelastic scheduling problems. In this section, we first

determine the general capacity region of the system and then

present our algorithm.

A. Joint Elastic-Inelastic Capacity Region

 Similar to the case of elastic content, we use pi
m(k) to

denote the presence of inelastic content i € I in cache

during frame . Since the channel states do not change

during a frame, and there is at most one request (a u, i(k) €

{0,1} for inelastic content by each user , each cache may

schedule to broadcast content at most once per frame. We

let sn,e
m € {0,1}represent this scheduled service for frame.

Note that each cache can broadcast at most contents during

a frame, hence we require

The actual inelastic service, provided to user u for content

i, depends not only on the channel states and the cache

presence, but also on whether there is a new (not expired)

request for content . It should be straightforward to verify

that the total actual inelastic service provided to user u

during frame k is

For each frame k, we also denote the vector of all request

arrivals by

The channel states using

 And the scheduled service and placement by

Note that a legitimate schedule S(k) must satisfy

Since the channel states and the request arrivals are

identically and independently distributed over frames,

following the same argument as in [16], we can formally

define the capacity region of the joint elastic and inelastic

system based on the existence of a randomized stationary

policy.

Definition 1 (Capacity Region of the Joint Scenario):

 A set of elastic requests and inelastic requests (with

corresponding expected delivery ratios) are (strictly) feasible

if the following holds. There exists a policy that, during each

frame, given and , chooses a schedule among all legitimate

schedules with respect to a probability distribution , such that

where the expectation is over the randomness of the arrival

processes, channel states, and the probability distribution

P(S(k) |A(k), C(k))

.

B. Joint Throughput-Optimal Scheme

In Section III, we studied the elastic traffic using request

queues . For the inelastic requests, we now define a deficit

queue for each user that captures the accumulated

unhappiness of the user about the provided inelastic service.

denotes the length of the corresponding deficit queue at frame

and follows

where with probability , and it is zero otherwise. Note that the

deficit queue is a virtual queue whose length can be negative.

A negative length shows up when the provided inelastic

service is greater than the required service.

ISSN Number (online): 2454-9614

South Asian Journal of Engineering and Technology (SAJET)

Vol.2, No.5

22

We will present a joint scheme in Algorithm 2 that can

stabilize the requests queues and the (positive part of)

deficit queues for any feasible set of requests Therefore

Hence, the joint scheme can fulfill all feasible inelastic

requests in addition to also satisfying all elastic requests. It

is possible to simplify this algorithm by noting that we

only need to

cache content that is scheduled to be served in a frame. We

present a simplified version of Algorithm 2 in Appendix-D

for completeness.

Theorem 2: The joint scheme in Algorithm 2 is throughput

optimal. That is, it can fulfill any set of strictly feasible

elastic and inelastic request. In the proof of this theorem

(see Appendix-C), we show that by applying Algorithm 2,

the deficit and request queues are stable. Therefore, the

corresponding Markov chain is positive recurrent and

converges to a unique steady state.

The following corollary (refer to Appendix-E for the

proof)

provides a bound on the queue lengths at the steady state.

Corollary 1: Sum of the average request and deficit queue

lengths at the steady state satisfies

for some € > 0 that determines how close to the boundary

of the capacity region the requests are.

 We now discuss whether prediction is useful in the case

of inelastic traffic. The service to an inelastic user is

subject to the existence of a new unexpired request. In case

there is a valid request, we can only reduce the deficit of a

user by at most 1 unit. In other words, even if a user’s

deficit is large, it cannot be reduced by a large amount by

scheduling that user multiple times during a frame. This

property of inelastic traffic reduces the value of request

prediction in the sense that the content placement and

scheduling must be done in a complete accordance to the

realization of the channel states as well as the new request

arrivals. Hence, planning for the cache placement of the

inelastic content cannot be performed in advance.

Moreover, the capacity region of the inelastic content

distribution network in general has a complicated form (as

in Lemma 1), which requires dealing with probability

distributions. As a result, even foreseeing the required

amount of cache resources is not straightforward. Hence,

we conclude that prediction of arrival rates for inelastic

traffic is of marginal value.

V. INELASTIC CACHING WITH CONTENT EXPIRY

 In this section, we study an inelastic caching problem

where the contents expire after some time. In this new

model, which is compatible with real-time streaming of live

events, we only

 consider inelastic traffic and assume that the lifetime of

an inelastic content is equal to the length of a frame. Hence,

we can cache a content only for the duration of a frame

after which the content will not be useful any longer.

 We propose a new model for cache refresh cost that is

consistent with this scenario, in which loading a cache

during frame incurs a cost of per content. is a random

variable identically and independently distributed over

frames, with the average of for all . The total cost of

replacing new contents in the caches, at frame , is denoted

by , where

and denotes the presence of a fresh chunk of content in

cache for the th frame. Our objective is to find a policy

that stabilizes the deficit queues in the system at the

minimum long-time average expected cost of cache

replacement .

The following lemma indicates the existence of a

randomized stationary policy that can fulfill any set of

feasible requests at the minimum average cost.

Lemma 3: For any set of feasible inelastic requests, there

exists a randomized stationary policy such that at frame ,

given the arrivals , channel states , and the costs , itchooses

ISSN Number (online): 2454-9614

South Asian Journal of Engineering and Technology (SAJET)

Vol.2, No.5

23

a legitimate schedule according to a probability

distribution

On average, R* provides enough service, that is

at the minimum average expected cost .

The above expectations are with respect to the randomness of

the request arrivals, loading costs, channel states, and the

probability distribution used by policy . The proof follows the

same argument as in [14] and is omitted for brevity.

A.Minimum-Cost Throughput-Optimal Policy

 Following a similar queueing analysis as in the previous

sections, we consider a deficit queue for each user u . Our

objective is to find a policy that stabilizes these deficit queues

while minimizing the average cost. To achieve this goal, our

framework is to minimize an upper bound on expected

(Lyapunaov drift +cost) at each frame. The resulting scheme

is presented in Algorithm 3, and Theorem 4 evaluates its

performance.

Theorem 4: The proposed scheme stabilizes the deficit queues

for any set of feasible requests, and hence is throughput

optimal. Moreover, it incurs a long-time average expected

cost that deviates from the minimum cost by an amount less

than
|𝑢|

 2𝑌

Observation 1: By increasing the control parameter , we

can achieve an average expected cost that is arbitrarily

close to the minimum cost. However, this will potentially

lead to larger expected deficit queue lengths. Hence, there

is a tradeoff between the cost and the average deficit queue

lengths.

Proof: Consider the Lyapunov function as mentioned

before, we will try to minimize an upper bound on the

expected sum of the Lyapunov drift and cost

Where Y >0 is a control parameter to trade off cost with

performance.

 From the analysis in appendix-c we have

At each frame k, given the arrival s,channel states and the

costs ᵧm (k), we minimize

Overall legitimate schedules to get pi

m(k) and su (k).therfore,

we will have

Where the right-hand side is what the randomized stationary

Policy R* achieves. If the requests are strictly feasible, then

for

All u ∑ € > 0 ,Ȇ *[Su(k)] >nu λ u +€ such that . Considering

this fact and in (23) and (21) gives

ISSN Number (online): 2454-9614

South Asian Journal of Engineering and Technology (SAJET)

Vol.2, No.5

24

Where V(k) is the value of the Lypaunov function at frame k

when we use our proposed schedule. It is clear that for large

enough values, the expected drift is negative, and hence the

scheme is stabilizing the deficit queues. Note that (24) holds

for any frame . We take expectation from both sides of this

inequality,with respect to the distribution of the deficit queues

, to get

Assume the initial deficit queue lengths are zero i.e.,

V(0)=0

Now sum both sides of(25) from k = 0 to k = k and divide

by k+1 to get

By letting K tend to infinity and nothing that E[v(K+1)] is

a bounded positive value for each K, we get

Note that in the studied model, we may fetch a fresh chunk

of content at frame only if it is scheduled to be served

because otherwise it gets expired and becomes useless by

the end of this frame. Therefore pi
m(k) = si

m(k) , and the

optimization in (22) can be simplified to the one presented

in Algorithm 3.

VI. SIMULATION

 In this section, we use MATLAB simulations of a

wireless content distribution network to evaluate the

performance of: 1) the proposed throughput-optimal

algorithms; 2) a suboptimal decomposed scheme; and 3) a

distributed greedy policy. The simulated CDN is an

example of the one shown in Fig. 1 with the following

specifications. There are |M|=3 caches, |N|=4 clusters, |U|

= 12 and inelastic users. The capacity of each cache is v =

3, and D = 4 is the duration of a frame. Each user requires

a delivery ratio of nu = 0.9 and has a request rate of λu

content/frame. The popularity of inelastic requests is

uniformly distributed among |I|= 12 different types of

inelastic content. There are a total of |E| elastic contents,

for each there is a binomial Bin(4,0.2) number of requests

in each cluster (i.e., λ n,e=0.8). We further assume the

packet erasure probability of each wireless channel is 25%.

The mean delivery ratio (average over all users, denoted

by ǹ*) and the mean elastic service rate (denoted by s *el)

provided by Algorithm 2 are presented in Table II for

different numbers

Algorithm 4: Decomposed Elastic-Inelastic Scheduling and

Placement Scheme

Given the statistics of the requests and channel states, divide

the available cache capacity to v to v E and v –v E

Elastic traffic:

Allocate vE of the caches’ capacity to elastic contents and use

Algorithms 1 for service scheduling and content placement of

the elastic requests.

Inelastic traffic:

At the beginning of frame , given the deficit queue lengths,

arrivals and the channel states, let . du=du(k)+∑ i au,I (k)

Solve the following maximization problem to find the optimal

inelastic schedule:

ISSN Number (online): 2454-9614

South Asian Journal of Engineering and Technology (SAJET)

Vol.2, No.5

25

 Of elastic contents (denoted by |E|). As expected, by

increasing, |E|, the performance drops. We saw, in Section IV,

that a throughput-optimal scheme must jointly decide on

elastic and inelastic scheduling and dynamically allocate the

cache spaces to these two types of traffic based on the

channel states and new request arrivals. This will result in a

fairly complex optimization problem as in Algorithm 2. In

Algorithm 4, we propose a simple (suboptimal) scheme that

divides the cache spaces for different types of content a

priori. Following this static cache resource allocation, the

scheduling of inelastic and elastic requests can be completely

decomposed, and the (sub) optimal schedule can be found

TABLE IV

PERFORMANCE OF ALGORITHM

Algorithm 5: Decentralized Greedy Joint scheme

Each cache m places the content and schedules the service

independently from the other caches by solving the

following:

In Table III, we observe that the reduction of the

performance in Algorithm 4 is at most 4%–6% compared

to Algorithm 2. It is worth noting that when the elastic

requests are not achievable due to wireless channel

constraints (e.g., for|E|=10,12 in Table II), separating

inelastic and elastic scheduling can actually be beneficial.

As seen in Table III, there is up to 2% improvement in the

provided inelastic service for these cases. Essentially, by

devoting a fixed proportion of the cache capacities to

inelastic content, we ensure that long elastic request

queues will not cause the scheduler allocate excess cache

space to elastic content. As mentioned earlier, Algorithm 2

can be very hard to implement in large networks.

Therefore, we propose a distributed greedy scheme

(Algorithm 5), whose performance is evaluated in Table

In this algorithm, each cache, independent of the others,

loads and serves content. The simulation results suggest

that although the greedy algorithm is not throughput-

optimal, the performance loss is limited to at most ~ 15%

compared to the throughput-optimal scheme.

Finally, we study the performance of Algorithm 3, which

is aimed toward real-time streaming. The results are

presented in Table V. Here, we use a trade off parameter

Y that determines how much we value refresh cost versus

throughput. As expected, the average provided delivery

ratio decreases with the trade off parameter Y, while

increasing Y causes the average Cost decrease and

converge to its minimum value.

VII. CONCLUSION

 In this paper, we studied algorithms for content placement

and scheduling in wireless broadcast networks. While

there has been significant work on content caching

algorithms, there is much less on the interaction of caching

and networks. Converting the caching and load balancing

problem into one of queuing and scheduling is hence

interesting. We considered a system in which both

inelastic and elastic requests coexist. Our objective was to

stabilize the system in terms of finite queue lengths for

elastic traffic and zero average deficit value for the

inelastic traffic. We showed how an algorithm that jointly

performs scheduling and placement in such a way that

Lyapunov drift is minimized is capable of stabilizing the

system. In designing these schemes, we showed that

knowledge of the arrival process is of limited value to

taking content placement decisions. We incorporated the

cost of loading caches in our problem with considering

two different models. In the first model, cost corresponds

to refreshing the caches with unit periodicity. In the second

model relating to inelastic caching with expiry, we directly

assumed a unit cost for replacing each content after

expiration. A max-weight-type policy was suggested for

this model, which can stabilize the deficit queues and

achieves an average cost that is arbitrarily close to the

minimum cost.

ISSN Number (online): 2454-9614

South Asian Journal of Engineering and Technology (SAJET)

Vol.2, No.5

26

 APPENDIX

A. Bounds on the constant term in the Lyapunov drift

(Theorem 1)

 For the ease of notation, let

Hence,

For the drift expression in the proof of theorem 1, it is

straight forward to verify

Where (a) follows from

And (b) holds because ∑ e (sn,e

m)(k) < D

B. Simplified Implementation of algorithm I

We show that (pn,e
m)*, (sn,e

m)* ,values chosen by algorithm

Are the optimal values for the following problem:

Suppose that pn,e

m (k)=, pn,e
m (k)* (satisfying ∑e (pn,e

m)(k) <v)

Are given we can now separately solve (30) for each cache

m and front endn to find (sn,e
m)*

One can verify the optima l value of the objective function

is Dcn
m(k) max f € E (pf

m)*q n,f). Which can be achieved

by?

Next, we observe the optimal (pf

m)* values must be chosen

such that

Is maximized .It is straight forward to see such (pf

m)*

values can also be derived from solving the problem

C.Throughput optimality of Algorithm 2

Consider the joint Lyapunov function (k) =VE(k)+VI(k)

where

And vE (k) is defined as in the proof of theorem 1.the

expected drift ∆ V(k) =E[v(K+1)-V(k)|qn,e,du(k+)=du] can

be written

ISSN Number (online): 2454-9614

South Asian Journal of Engineering and Technology (SAJET)

Vol.2, No.5

27

And we have already shown (proof of theorem 1) that

The expected in elastic drift can also be bounded as

follows:

In which (a) follows since ({X+Y)+)2<({x}+y)2,and B’’

has a finite value

Consequently, the following bound holds for the joint

drift:

At the beginning of each frame k , the scheme in

Algorithm 2 chooses the schedule S*(k) by solving (17).

where the expectation is taken over all legitimate schedules

S(k) with respect to the distribution used by the policy P*

.Taking expectation from both sides of the above inequality

over the arrival and channel state processes and using (13)

will result in (for a small enough € >0)

Considering the above inequality in(32) concludes

Thus, the expected drift is negative for large enough queue

lengths, and hence the queues will be stable using the scheme

in Algorithm 2.

D. Simplified Implementation of Algorithm 2

Note that in the current model, we assumed that the caches

can refresh their content at the beginning of each frame.

Hence, we only need to cache a chunk of content at frame if it

is scheduled to be served. Therefore, we let pi
m (k)=

si
m(k) and simplify the maximization in Algorithm 2 as

follows:

E. Proof of corollary 1

We have shown, using the Lyapunov analysis, that the

Markov chain of the deficit and request queues is positive

recurrent (stable).

Note that E[V(k+1)]-E[v(k)] holds at the steady state ,and

hence

ISSN Number (online): 2454-9614

South Asian Journal of Engineering and Technology (SAJET)

Vol.2, No.5

28

From (31) and (29) we know

And the proof will follow by considering the above bound

in (34)

ACKNOWLEDGEMENT

In this paper we have algorithms to maintain the stability

of the system load within the capacity region. We have

Minimizes the average expected cost while stabilizing the

deficit queues. In this we have to refresh the caches.

Here the content is transferred through wireless base

station at front end terminals .Finally the content is

transferred to all the clusters that are elastic and inelastic

traffic type.

REFERENCES

[1] N. Abedini and S. Shakkottai, “Content caching and scheduling in

wireless broadcast networks with elastic and inelastic traffic,” in Proc.
IEEE WiOpt, 2011, pp. 125–132.

[2] M. M. Amble, P. Parag, S. Shakkottai, and L. Ying, “Content-aware

caching and traffic management in content distribution networks,” in
Proc. IEEE INFOCOM, Shanghai, China, Apr. 2011, pp. 2858–2866.

[3] A. Stolyar, “Maximizing queueing network utility subject to stability:

Greedy primal-dual algorithm,” Queueing Syst. Theory Appl., vol. 50,
no. 4, pp. 401–457, 2005.

[4] S. Borst, V. Gupta, and A. Walid, “Distributed caching algorithms

for content distribution networks,” in Proc. IEEE INFOCOM, San
Diego, CA, USA, Mar. 2010, pp. 1–9.

[5] P. Cao and S. Irani, “Cost-awareWWWproxy caching algorithms,”

in Proc. USENIX Symp. Internet Technol. Syst., Berkeley, CA, Dec.
1997, p. 18.

[6] K. Psounis and B. Prabhakar, “Efficient randomized Web-cache

replacement schemes using samples from past eviction times,”
IEEE/ACM Trans. Netw., vol. 10, no. 4, pp. 441–455, Aug. 2002.

[7] L. Tassiulas and A. Ephremides, “Stability properties of constrained

 queueing systems and scheduling policies for maximum throughput in
 multihop radio networks,” IEEE Trans. Autom. Control, vol. 37, no.

12, pp. 1936–1948, Dec. 1992.

[8] X. Lin and N. Shroff, “Joint rate control and scheduling in multihop
 wireless networks,” in Proc. 43rd IEEE CDC, Paradise Islands,

Bahamas,

Dec. 2004, vol. 2, pp. 1484–1489.
[9] J. Jaramillo and R. Srikant, “Optimal scheduling for fair resource

allocation in ad hoc networks with elastic and inelastic traffic,” in

Proc. IEEE INFOCOM, San Diego, CA, USA, Mar. 2010, pp. 1–9.

Selected Paper from International Conference on

Computing (NECICC-2k15)

ISSN Number (online): 2454-9614

South Asian Journal of Engineering and Technology (SAJET)

Vol.2, No.5

29

