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Abstract—Privacy concerns in online social networking services 

have prompted a number of proposals for decentralized online 

social networks (DOSN) that remove the central provider and 

aim at giving the users control over their data and who can 

access it. This is usually done by cryptographic means. Existing 

DOSNs use cryptographic primitives that hide the data but 

reveal the access policies. At the same time, there are privacy-

preserving variants of these cryptographic primitives that do not 

reveal access policies. They are, however, not suitable for usage 

in the DOSN context because of performance or storage 

constraints. A DOSN needs to achieve both privacy and 

performance to be useful. We analyse predicate encryption (PE) 

and adapt it to the DOSN context. We propose a univariate 

polynomial construction for access policies in PE that drastically 

increases performance of the scheme but leaks some part of the 

access policy to users with access rights. We utilize Bloom filters 

as a means of decreasing decryption time and indicate objects 

that can be decrypted by a particular user.  We evaluate the 

performance of the adapted scheme in the concrete scenario of a 

news feed. Our PE scheme is best suited for encrypting for 

groups or small sets of separate identities. 

 

I.INTRODUCTION 
 

     Centralized online social networks collect and store private 

information and are thus prone to privacy leaks, ranging from 

modest data mining for advertisement purposes to direct 

transfer of data to third parties (e.g. recent reports on National 

Security Agency’s global surveillance program [1]). 

      One of the alternatives is a decentralized provider-less P2P 

architecture (DOSN), in which users have control over their 

data and who can access it. This relies on untrusted storage 

and thus requires cryptographic means to protect data. 

General-purpose cryptographic profiles in DOSN typically use 

either attribute-based encryption (ABE)[2], broadcast 

encryption (BE) [3], or symmetric encryption. The main aim 

is to protect confidentiality (of the content itself) and privacy 

(of information about the content or access policies). While all 

of the existing systems provide confidentiality guarantees, 

privacy is usually less addressed.  

      An access control mechanism should be privacy 

preserving. By privacy preserving we mean that the user 

should be able to decrypt only the objects for which he 

satisfies the access policy; encrypted objects should not to 

reveal users who have access to these objects; the quantity, 

size, and type of objects should be unknown to the user unless 

he can decrypt them.  

      The choice of cryptographic primitive does not only 

involve performance and privacy as parameters, but also the 

expressiveness and semantics of access policies (easily) 

supported. In ABE, a key is associated with one or more 

attributes, and a ciphertext is encrypted for some policy of 

attributes (e.g., “friends or family”). In BE, ciphertexts are 

instead directed to sets of recipients. This difference in the 

cryptographic primitive typically also affects the semantics of 

the system when one e.g. adds a new friend. By default, in 

ABE the new friend would be able to access all previous 

content addressed to friends, while in BE she would not. A 

drawback of both BE and ABE is that the standard 

implementations reveal the access polic specified together 

with each ciphertext (as the access policy is needed for 

decryption).  

     While current DOSNs are not privacy-preserving as 

outlined above (see Section II), ABE-based DOSN systems 

could be patched to provide privacy by using a privacy-

preserving version of this cryptographic primitive [4], but 

efficiency would be lost because of the quadratic growth of 

the ciphertext size in the number of attributes. BE-based 

systems could use anonymous BE, ANOBE [5], but then long 

ciphertexts make it inefficient.  

     Computational efficiency and storage efficiency are crucial 

for DOSNs which are characterized by a large number ofusers 

and objects, and by the absence of a centralized storage. 

Privacy preservation, being the main motivation behind 

DOSN, is of equal importance. 

      Striving to achieve privacy, without sacrificing 

performance, we introduce predicate encryption (PE) to 

DOSN. Like ABE, PE uses attribute-based policies. When 

creating a ciphertext, the encryptor specifies an access policy 

and only those users whose keys satisfy the policy can 

decrypt. We chose PE because it does not reveal access 

policies. It cannot, however, be used directly for DOSN 

because of its modest performance.  

       In current PE schemes, ciphertext size, encryption and 

decryption times are linear in the size of vectors associated 

with decryption keys and ciphertexts. Standard constructions 

result in very large vectors already for mildly complex access 
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policies. We propose a univariate polynomial construction for 

access policies that has a short vector and thus drastically 

increases performance of the scheme. It provides full privacy 

preservation from external observers and partial from users 

who have access according to this policy (they can infer some 

2014 IEEE International Conference on Pervasive Computing 

and Communications Workshops (PERCOM Workshops) part 

of the access policy). Hiding access policies in PE also 

prevents legitimate users from knowing whether they will be 

able to decrypt a ciphertext. We address this by using Bloom 

filters.  

      For the purpose of this paper, we have the following 

system model of a DOSN. We assume the existence of 

distributed storage for storing data. The storage is untrusted, 

consequently the access control mechanism is independent of 

storage, and is based on encryption. Every encrypted or 

unencrypted object stored in the profile is world-readable. 

Users set access policies for their data and a particular 

cryptographic scheme is used to realize the access policy the 

user decides on. The profile owner creates personal decryption 

keys for each of his friends. These keys are stored in a “key 

file” (one for each friend) on the profile of the profile owner 

encrypted under the per-friendship symmetric key shared by 

the profile owner and the friend. Thus, we require that during 

friendship establishment users create shared secret keys that 

are used to retrieve keys for decrypting data on each other’s 

profile. An object is encrypted under some access policy. 

Only the user whose decryption key satisfies the access policy 

of an object can decrypt the object. A digital signature scheme 

(independent from the encryption scheme) is used for message 

authentication purposes. Each user is assumed to have a 

private key for signing messages that he posts. 

A. Our contribution 

     We introduce a PE scheme in the DOSN setting and 

develop modifications to efficiently adapt it to this setting. We 

evaluate the performance of the modified scheme. We also 

present a performance-friendly privacy-preserving 

mechanism: Bloom filters for indication of objects that a user 

can decrypt. 

B. Paper outline 

    We start with discussing related work in Section II and 

continue with a description of a proposed cryptographic 

primitive and our modifications in Section III. Section IV is 

devoted to the evaluation of efficiency of our construction. 

Section V concludes the paper. 

 

II. RELATED WORK 

    There has been a lot of research on decentralized social 

networks [6], [7], [8], [9]. The biggest concerns are distributed 

storage, the access control mechanism, and privacy. An early 

version of the PeerSoN [10], [11] P2P social network used a 

DHT to look up data and a combination of symmetric and 

asymmetric cryptography for encryption-based access control 

on untrusted storage. Privacy was not sufficiently addressed 

since userIDs (or public keys) were stored alongside 

encrypted data. Safebook [6] uses trusted friends to store data 

on their computers and to ensure privacy. Confidentiality is 

again achieved with a combination of symmetric and 

asymmetric encryption, and a DHT is used as a lookup service 

to find a path to the stored data. The privacy of the scheme is 

partial because explicitly trusted parties (most trusted friends 

that serve as mirrors) can trace communication parties, but 

communication privacy is protected from external observers 

via multi-hop routing. Persona [7] relies on untrusted storage 

and uses ciphertext policy attribute-based encryption for 

access control. To provide specific rights to stored objects, the 

profile owner defines access control lists (ACLs) and the 

storage enforces them. This scheme, however, does not 

guarantee privacy. ACLs contain the users’ public keys and 

their access rights. The storage authenticates the users and 

authorizes their actions based on the entries in the ACL. 

Cachet [8] is an update of the Decent architecture [12]. It uses 

a DHT to store data and uses ABE to ensure confidentiality. In 

the ABE used the access policy is described openly in the 

header of the ciphertext. The authors observe the resulting 

privacy violation, but only address it partially by hiding these 

headers from the storage system. Users can still observe 

headers and thus can see plaintext ABE access policies. For 

efficiency, the authors used caching of information and store 

the unencrypted version of this information on the nodes that 

satisfy the ABE policy (nodes that are able to decrypt). Thus 

users will know for whom the content is encrypted, and they 

may even be able to trace the requests of other people who 

also can decrypt the same information. G¨unther et. al. [9] 

describe two solutions for publishing of content on social 

network profiles. One solution uses broadcast encryption with 

pseudonyms. Pseudonyms are needed to provide privacy 

protection and patch the used BE scheme which leaks the set 

of recipients. Pseudonyms give a limited anonymity property 

[9], but it is still possible to see which pseudonym is 

authorized to decrypt what. Taking into account that other 

users might have some additional information about an 

event/question that the encrypted message covers, we argue 

that the protection is not sufficient as users may infer the 

identity behind the pseudonym. Their second construction is 

based on symmetric encryption. It requires for each attribute 

value pair in the system and for each user from the set of 

recipients of that value to have a separate decryption key. This 

approach scales poorly to large system sizes. Tahoe [13], a 

distributed file system, uses symmetric encryption. Each 

encrypted file is associated with at least two unique 

cryptographic values/capabilities. One is a symmetric 

encryption key and the other one is a hash value for checking 

integrity. To give access to an encrypted file to a user, one has 

to share these two cryptographic capabilities with this user. 

Taking into account the large number of friends in social 

networks, such sharing results in too much overhead and 

becomes prohibitively expensive. By grouping a set of files 

into a directory (a file that contains all cryptographic 

capabilities required to read/write any file from the set [13]) 

and then sharing cryptographic capabilities only for this 

directory we could partially solve the problem, but then we 

lose flexibility of fine-grained access to files. Anderson et. al 

[14] describe a social network that divides a user profile in 
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discrete encrypted blocks. Symmetric secret keys for these 

blocks are shared between users who should have access to 

information stored in these blocks by using hierarchical group 

key management schemes. We argue, that it is not obvious 

that there exists a hierarchy of users/groups (unlike the 

hierarchy of files and directories) in a profile of an average 

user besides the most simple one, in which any group is a 

subset of group “friends” containing all connections of the 

profile owner. In a system without access rights hierarchy, a 

hierarchical group key management scheme will perform no 

better than a simple system based on shared keys for groups. 

Besides, to give a different view of a folder/directory (e.g. the 

“wall” ) to different users while keeping cryptographic 

overhead at bay would require elaborate constructions 

exceeding the possibilities of the hierarchical group key 

management scheme. Our system seamlessly supports this. 

Our approach is to use a PE scheme that hides access policies 

and is thus more privacy preserving than the related work. 

This scheme needs adaptations to achieve high performance 

and functionality in the DOSN context. We describe them in 

the following. 

 

III. PREDICATE ENCRYPTION 

     Predicate encryption (PE) [15] is a cryptographic primitive 

that provides access control of encrypted data using attribute 

based policies. When creating a ciphertext, the encryptor 

specifies an access policy and only those users whose keys 

satisfy the policy can decrypt. The decryption keys are 

generated by the encryptor using a master secret.  

    The functionality of PE schemes is similar to that of ABE, 

but the policies supported by PE schemes are in fact less 

suitable for our goals than those of ABE. The reason we 

pursue PE schemes is that in many PE schemes ([15], [16], 

[17]) nothing about the policy is revealed from the cipher text. 

This property is called “data privacy” [18] and it is in line 

with our privacy requirements defined in Section I. We do not 

support a so called “predicate privacy” property [18], when a 

decryption key does not reveal any information about access 

rights associated with it. We argue that in the DOSN setting a 

user possessing a decryption key and knowing some 

background social information (about a person, an event, etc.) 

can eventually infer access rights associated with the key in 

his possession by seeing what he can decrypt.  

    The expressiveness of access policies depends on the 

chosen PE scheme. The most expressive class of PE schemes 

[15], [16], [17] uses so-called inner-product predicates. In 

these, each key is associated with a vector ¯v of length ` and 

the ciphertext is associated with a vector ¯a of equal length 

over ZN (for some large integer N). Decryption succeeds only  

If  

In other words, one can decrypt a ciphertext when a vector 

associated with the ciphertext is orthogonal to a vector 

associated with the decryption key. One of these vectors is an 

access policy and another one represents an attribute.  

    In our case, it is the profile owner who issues decryption 

keys to his friends. Friends cannot see or modify vectors 

associated with their decryption keys.  

    We remark that while we describe PE as having attributes 

associated with keys and an access policy associated with 

cipher texts, the dual is also prevalent in the literature. With 

our focus on inner-product PE schemes, the difference 

between what is a policy and what is an attribute is not 

important as the inner-product is a commutative operation. 

 

A. Inner-product access policies  

      Based on the primitive of vector inner products, one can 

implement various more complex access formulas. The 

construction of these go via polynomial evaluation, following 

a construction by Katz et al. [15]. Here, the access policy is 

represented by a polynomial 

and 

decryption is possible if the key corresponds to  one of the 

roots of the polynomial. 

      To implement polynomial evaluation, we represent the 

access policy by the vector  and a 

key associated with an attribute A as 

 The inner product of two such 

vectors corresponds to evaluating the polynomial p(A). As 

these vectors must be of the same length, the degree of the 

polynomial (and thus the complexity of the access policy 

which can be expressed) must be decided when the keys are 

issued. We remark that in the actual construction, both these 

vectors are “blinded” by multiplying them with a random 

element 

 This provides randomization of 

ciphertexts such that multiple ciphertexts with the same policy 

still look different. For clarity of exposition, we omit this 

randomization from the notation. Based on polynomial 

evaluation, we can in principle support Boolean CNF or DNF 

formulas. Firstly, for disjunction, the policy can 

be expressed using the following univariate polynomial: 

       p(x) = (x − A)(x − B) = x2 − (A + B)x + AB 

   The resulting vector is thus 

 and keys representing 

either A or B can decrypt the corresponding ciphertext. 

   In our setting, a user has several attributes (e.g., Alice is 

both a friend of Bob’s as well as in the same programming 

club as he is). Ideally, we would like to give each user a single 

key representing all of her attributes. The natural solution to 

this is to go to multivariate polynomials, and the evaluation 

mechanism proposed earlier translates straightforwardly. 

However, this approach cannot be directly applied in our 

setting and we now proceed to show it and explain why. 

   We now naively try to represent the access policy 

and express it with a multivariate polynomial:  

p(x1, x2) = (x1 − A)(x2 − B) = x1x2 − Bx1 − Ax2 + AB 
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which we translate to a vector ¯p = (1,−B,−A,AB). A key with 

attributes x1 = A and x2 = C would be represented by the 

vector (AC, A,C, 1). Here we spot the first problem with this 

construction: attributes are now tied to specific variables of 

the polynomial! Thus, a key with x1 = C and x2 = A cannot 

decrypt the ciphertext as it is not orthogonal to the policy. 

This issue can be alleviated by making the access policy large, 

e.g. specifying the policy 

 This 

rapidly yields polynomials of high degree, and as lengths are 

fixed when keys are issued, we would need to pay a high 

overhead on every ciphertext. Performance of these schemes 

is linear in the vector length with a relatively high constant. 

We evaluate performance in Section IV, our finding there is 

that a vector length of about 10 elements still yields good 

performance. 

   Other Boolean constructions such as conjunction and 

negation can also be supported, with the same issues as above 

when multinomial are used (i.e., the atomic clauses are of the 

form xi = ai, while we need “has attribute ai”). We omit details 

here and instead proceed to our simplified construction. 

 

B. Our construction for access policies 

   Based on the observation that univariate polynomials result 

in more efficient schemes than multivariate ones, we propose 

to construct access policies solely on univariate polynomials. 

To support conjunctions we introduce virtual attributes, and 

transform all policies to a disjunctive normal form (DNF). 

   We will be referring to the PE scheme with our construction 

for access policies as “PE with modified access policies” 

(PEMAP)  in the rest of the article. 

   This construction builds on the polynomial construction 

previously described, where we saw that a polynomial of 

degree `+1 can represent a disjunction over ` attributes. Here, 

a user receives one key for each attribute she has, and will 

then have to use the appropriate one to decrypt (we show how 

she learns which key to use in Section III-C). By itself this 

would support only disjunctive access policies (i.e., “friend 

OR family OR . . . ”). 

  To deal with conjunctions we simply add a new virtual 

attribute for each conjunction of attributes. While this creates 

an exponential increase in attributes (and thus keys issued to 

users), the approach is feasible as long as no user is placed in 

too many groups by the profile owner. In practice most people 

only use a very small number of groups 6 - 13 ([19], [20]) for 

access control in OSNs. We have not found data on how many 

groups a single user is typically placed in, but given the low 

number of groups used, we speculate that a given user would 

very rarely be in a large fraction of the groups used, and that 

the scheme would thus work in practice, despite the 

exponential scaling. 

    With this design, we may represent (A^B) by the virtual 

attribute M, and (B ^ C) is mapped to some different virtual 

attribute, e.g. V . Thus, if a user is a member of groups A and 

B, she would also be given a key corresponding to M. In 

general, a user who is a member of g groups will be given  2g 

− 1 decryption keys. We further add an identity attribute IDi, 

which is an individual attribute for each user. This allows us 

to name individual users in our access policies. Thus, in total 

in our scheme, a user will receive 2g keys. For example, a user 

who is a member of 4 groups of the profile profile owner will 

receive 24 keys. As we mentioned in the previous paragraph, a 

user would very rarely be in a large number of groups.                                    

Assume we want to encrypt for  This 

policy is expressed as the following univariate polynomial: 

          p(x) = (x − A)(x − B ^ C) = (x − A)(x − V ) 

   The corresponding vector is ¯p = (1,−(A + V ), AV ).  

   We have a trade-off between efficiency and functionality of 

the scheme: the longer the vector, the larger the clauses that 

can be used in formulas, but the higher the overhead. Recall 

that the vector length is fixed once keys has been issued. This 

vector length is a profile-wide parameter that every profile 

owner can choose. The choice affects the sizes of ciphertexts, 

and decryption keys, as well as the computational overhead of 

the scheme. It, however, neither affects the number of groups 

that the profile owner can create (this number is unbounded), 

nor the number of keys that some user has. We suggest using 

vectors of length 10, based on evaluation where we found that 

length to yield adequate performance of 70 ms decryption 

time (see Section IV) while supporting a reasonable 

complexity of access formulas. With this vector length an 

access formula can support up to 9 clauses.  

   To make inner-product PE schemes efficient enough for our 

application we use a construction that require multiple 

decryption keys per user. However, unfortunately this gives 

rise to some privacy issues, which was what we set out to 

address. We believe these are still significantly milder than 

those of ABE where the whole access policy is leaked. 

Specifically, the problems we note are that by keeping track of 

which of his keys were able to decrypt what ciphertexts, a user 

may over time from context understand the meaning of his 

keys (e.g., if all ciphertexts accessed via key k1 seem to be 

about the programming club, the user may infer that this key 

likely corresponds to that attribute). In addition, by simply 

counting the number of keys he receives, a user learns the 

number of groups he is a member of. The latter problem can 

be mitigated by padding: giving each user some constant 

number of keys where some of them are random and never 

used (but then over time, the user may identify these keys as 

being padding as they are never used). 

Example: Let’s set the vector length to 10 for all messages in 

our profile. Our friend who is a member of one group A will 

have two decryption keys: one for the group attribute and 

another one for the identity. The vectors will be: 

Let’s encrypt 

for:  

, where A,B,C,D, and E are groups and ID2, ID3, ID4 

are identities of some users. The polynomial will have the 

following form: 

p(x) = (x − A)(x − B)(x − D)(x − Q)(x − ID2) 

               (x − ID3)(x − ID5)(x − R1)(x − R2) 
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, where Q is a virtual attribute that represents C ^ E, Ri are 

random values used for padding. Ri should not be equal to any 

other group/identity attribute in our profile. By expanding this 

polynomial and taking coefficients as vector elements, we get 

the following vector: 

¯ct = (1,−(A + B + D + Q + ID2 + ID3 + ID5 + 

+R1 + R2), . . . ,−A · B · D · Q · ID2 · ID3 · ID5 · R1 · R2) 

Vectors ¯ct and ¯kA are orthogonal, and thus our friend can 

decrypt. 

 

C. Bloom filters 

    A profile in the DOSN contains multiple objects encrypted 

for different users. It is impossible for a user to determine if 

an object is encrypted for him without trying to decrypt it 

since the ciphertexts do not reveal access policies. The use 

could use a trial-and-error approach (sequentially trying to 

decrypt objects) for rendering the profile, but this becomes 

prohibitively expensive with the large number of objects. 

Therefore, we utilize Bloom filters [21] to speed up rendering 

and to show users in a privacy-preserving manner whether 

they can decrypt objects. 

      A Bloom filter is a space-efficient data structure that 

represents membership of elements in the set. From the data 

storage point of view, it is a bit array of some bounded size m. 

Bloom filters have two operations: add(x) and query(x), where 

x is some element. The add operation consists of hashing an 

element with several hash functions h1, ...,hk, which uniformly 

map the element to a number hi(x) = yi 2 [1;m], and setting 

bits yi to 1 in the array (initially the array is filled with zeroes). 

The query operation repeats the same hashing procedure, and 

then checks if the appropriate bits are set to 1. 

    In our construction, each key has an associated key ID, a 

random 128-bit string stored alongside the key, picked by the 

profile owner and known only to the profile owner and a user 

who has this key. These keyIDs are the values which are 

inserted and tested for in our Bloom filters. Two privacy 

problems need to be addressed when constructing the Bloom 

filters. Firstly, if an adversary learns which keyIDs are present 

in the Bloom filter, these will serve as pseudonyms for the 

users having access, which is a privacy violation. To remedy 

this, we add a nonce S to the Bloom filter and instead of 

inserting the keyID directly, we transform the input as: input = 

H(S||keyID) where H is a cryptographically strong hash 

function, e.g. SHA-256. The nonce S is stored alongside  an 

encrypted object, see a format of the encrypted object in  the 

end of this section. 

    The second issue is that the number of bits which are set to 

1 in the Bloom filter allows an adversary to learn the 

approximate size of the recipient set. We address this issue via 

padding. Each profile owner will pick some fixed size greater 

than the number of his friends and ensure that the Bloom  

filters she publishes always contain that many values. To do 

so, after inserting the keyIDs describing the access policy, the 

profile owner samples random values and inserts them into the 

Bloom filter until it is sufficiently full. The price we pay for 

this padding is that Bloom filters need to be larger than they 

would be otherwise in order to maintain a reasonable false 

positive ratio. 

      With a Bloom filter, an encrypted object has the following 

format: 

       CT,PEenc(PK,K,AP), S,BF(H(S||kID1), 

     . . . , H(S||kIDn),R1, . . . Rp_n), SGN (1) 

where CT - is an object encrypted with a random key K, K - a 

symmetric key used for AES encryption, PK- public key of 

the PE scheme used for encryption, AP - access policy, S - 

nonce, BF - Bloom filter, H - cryptographically secure hash 

function, kIDi - an identifier of a decryption key belonging to 

recipient i, Ri - random values for padding, p - padding size, 

SGN - signature of all the previous fields. 

 

IV. PERFORMANCE EVALUATION 

  We have developed a lightweight simulator to estimate the 

efficiency of the proposed encryption-based access control. 

All tests described in this paragraph were run on the 2,67GHz 

Fig. 1. PE scheme performance 

    Intel Core i5 M580 processor on the Ubuntu 12.10 

machine. Measurements and estimation were done for a 128-

bit security level and a 128-bit plaintext (the size of the 

symmetric key). We used a MIRACL cryptographic library 

[22] for the predicate encryption and OpenSSL v 1.0.1c for 

the underlying symmetric encryption (AES). All 

measurements were done with disabled multi-threading/multi-

core. 

    The performance of AES was estimated using the OpenSSL 

benchmark. The AES-128 cipher in CTR mode showed 2400 

MB/s processing rate. The time to create a random 128-bit 

AES key is negligible. 

  

A. Pe 

  In this paper, we are using Park’s PE scheme [16], where a 

cipher text contains (4n + 3) group elements of an elliptic 

curve with a bilinear pairing. The size of representing a group 

element varies a bit with the group selection, e.g. for a 128-  

bit security level NIST recommendations [23] give a range of 

256-383 bits per element. The library we used for 

performance measurements used a curve with a representation 

of 360 bits. Thus, at the 128 bit security level with 128-bit 

plaintext the ciphertext requires: 

PE.CT.size(l) = 102 + 180l bytes 
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where l is a dimension of the attribute vector. For 10 elements 

it is 1902 bytes.  

     We would like to emphasize that there are more space 

efficient schemes. A PE scheme by Okamoto et al. [17] 

requires only (n + 5) elements for the ciphertext, and thus 

OkamotoPE.CT.size(10) = 15 · 256 = 460 bytes. 

The Figure 1 shows the performance of Park’s PE scheme 

[16] with a Barreto-Naehrig curve (BN-128), without the AES 

component. We would like to point out that it is possible to 

achieve several times higher encryption/decryption rates for 

this scheme [24]. 

 

B. Bloom filter 

     The storage overhead imposed by Bloom filters should be 

as small as possible. The number of bits m needed to encode 

membership information in the Bloom filter depends on the 

false-positive probability p and the number of elements n to be 

inserted. The space efficiency is calculated according to the 

following formula [25]: m = −n ln p (ln 2)2 , while the optimal 

number of hash functions k for a given space efficiency level 

is k = mn ⇤ ln 2. For example, the size of the Bloom filter for 

500 users with a false positive probability of 0,01 is 600 bytes. 

     The performance of a Bloom filter is determined by the 

performance of the underlying hash functions. Kirsch and 

Mitzenmacher [26] show that only two different hash 

functions h1(x) and h2(x) are required to implement a Bloom 

filter. From these, k hash functions can be simulated: gi(x) = 

h1(x)+i · h2(x), where i 2 [0, k −1]. Therefore, an insertion 

operation requires h = 2n hashing operation, where n is a 

number of objects to be inserted. With modern hash functions 

such as CityHash or MurmurHash the time to compute these 

hash functions is negligible. 

    However, for privacy reasons, we also require a 

cryptographically strong hash operation prior to insertion into 

the Bloom filter. To measure the computational cost of this 

hashing operation, we used the OpenSSL benchmark function 

for SHA- 256. The time required to hash 500 blocks of 256 

bits is below 1 ms. 

 

C. News feed assembly 

     We saw in Section IV-A that the computational cost of PE 

is relatively high. To estimate the impact this would have in a 

real system, and to assist in the recommendation on vector 

length we considered the common OSN workload of 

rendering a news feed. For this purpose, we developed a news 

feed assembly simulation which assumes the existence of a 

DOSN based on a DHT for peer lookup and distributed 

storage for storing persistent data. 

    We use a simple pull strategy (updates are pulled from the 

friends) to assemble a one-day news feed from 300 friends. 

An average Facebook user makes approximately 10 wall posts 

per month [27], or nearly 100 per year [28]. For each friend 

profile we set a uniformly distributed random number of 

encrypted objects (news) in the interval [0; 2]. So, the total 

mean number of encrypted objects is 300, which is 3 times 

higher than the average per day value for 300 friends. In this 

simulation the user has access to all posts considered, so the 

Bloom filter false positive rate does not affect performance. 

We show how performance is affected by cryptographic 

overhead; the computational overhead for membership tests in 

Bloom filters is negligible. 

     We assume that our DHT operations (writes, reads) have 

the cost of Mainline BitTorrent DHT lookups with NR128- A 

routing strategy [29]. Lookups are run in parallel. We use 

inverse transform sampling from raw CDF data describing 

NR128-A [29] for our lookup time pseudo-random generator. 

The number of consequent DHT lookups needed to retrieve a 

friend’s wall file depends on the DOSN architecture. We 

assume that a user needs one lookup to get the ”root” file for 

the friend’s profile, one for the file with names of files that 

contain decryption keys for all friends of the profile owner, 

one to get the file with decryption keys exactly for this user, 

and one for the wall file, thus 4 in total. Then each object 

requires one lookup. Thus the mean total number of DHT 

lookups for 300 objects is 1500. A mean DHT lookup time is 

183 ms. 

    Figure 2 shows the dependency between the news feed 

assembly time, the decryption speed, and the number of 

parallel lookups. The left-most points on the graph represent 

Fig. 2. News feed assembly time for 300 profiles 

 

the case when decryption is instantaneous, but DHT lookups 

still require some time. Since decryption runs in parallel with 

DHT lookups, its impact on the total assembly time is barely 

visible up to some decryption speed after which decryption 

starts to slow down the newsfeed assembly. Under a condition 

that one decryption operation takes 70 ms (PE decryption with 

10 attributes) a mean news feed assembly time for the case 

with 100 parallel lookups is 22.1 seconds with a standard 

deviation of 1.1 seconds. A mean number of decrypted objects 

in the first two seconds is 25, which we consider acceptable 

because the following news feed assembly can run in the 

background and show the results to the user as they come. For 

comparison, according to [30], the median time to load a 

Facebook page without images and stylesheets is 3.3 seconds. 

Facebook also uses a technique of partial content loading [31]. 

When a user logs in, for example, only 15 news feed stories 

are loaded. Each time a user scrolls down, a new chunk of 

user stories is loaded [32]. Thus, while a decryption time of 70 

ms may sound large in isolation, we believe that when 
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network latency and UI optimizations are taken into 

consideration, it still allows for a good user experience. 

   To reduce the newsfeed assembly time for the particular 

scheme we need to increase the decryption speed. It can be 

achieved by performing decryption on multiple processor 

cores (we were using only one single-threaded decryption 

engine for this simulation). One could also shift to a push 

strategy, immediately sending news to friends’ accounts when 

they arise. The news message is encrypted on a per-friendship 

basis with a corresponding shared secret key. It takes two 

lookups to get a link to the ”incoming” file. To push a news 

message to all 300 friends (running 100 lookups in parallel) 

with assumption that symmetric encryption is instantaneous 

requires a few seconds. The drawback of this strategy is that 

the amount of required storage space is increased, even if only 

the url to the news message and not the message itself is sent. 

V.CONCLUSION 

We have proposed to apply a privacy preserving scheme to 

the DOSN context: inner-product predicate encryption (PE). It 

is too expensive to use out of the box. Therefore for PE we 

proposed a construction for access policies that drastically 

increases performance, but introduces some trade-offs: it 

allows encrypting for a bounded set of groups/users; this 

bound is a trade-off between efficiency and functionality of 

the scheme; the number of groups in the system is unlimited; a 

user has 2g different decryption keys, where g is the number 

of groups a user is a member of having multiple keys leaks 

some information about access policies. PE is most suitable 

for encrypting for groups or small sets of separate identities. 

   We designed an experiment that showed that for newsfeed 

assembly from all friends our scheme shows good 

performance and thus user experience.  

For schemes that do not reveal access policies and have 

relatively slow decryption, we proposed to use Bloom filters 

to indicate to users which files they can decrypt. Bloom filters 

are both performance and space-efficient, and thus are suitable 

for DOSNs. 

In this paper, we focused the evaluation on performance to 

see if PE is even feasible under the constraints of 

decentralized online social networks, starting from the 

security and privacy properties of the original scheme. The 

next steps are to focus on security and privacy, as well as 

semantics of access policies of our modifications.  
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