

Selected paper: International Conference On Computing (NECICC-2k15)

Monitor Based Instant Refactoring Framework for

Detecting and Resolving Code Smells
Konanki Dinesh 1

1P.G.Scholar, Computer Science & Engineering, JNTUACE, A.P., India
1konankidinesh@gmail.com

Abstract—Software refactoring is a process of enhancing quality of

a software system in such a manner it should not affect the external

behavior of the code, it improves its internal structure. Refactoring

is used to improve code quality, reliability, and maintainability

throughout the software life cycle. The automated tools can be

used to detect various kinds of code smells. This may cause

another problem of extended time and effort because the smell

being refactored may have impact on resolving or increasing some

other types of code smells. That is a smell being refactored may

have impact on presence of an existing smell or brought some

more problems into the system. The previous methods lead to lots

of human effort and huge extent of maintenance time. Hence to

minimize the manual workload to get the quality source code for

easy maintenance the clamant refactoring technique is proposed in

this work to enrich detection and sequencing of bad smells.

I. INTRODUCTION

 Software refactoring [1], [2] is to reform the code in a series

of small internal structure of objects oriented software that to

improve the software quality in term of maintainability,

reusability and extensibility of such software, while software

external output remains unchanged. The term Refactoring was

first proposed to Opdyke [2] after it became popular with the

book written by Fowler et.al that published in the year 1999.

Refactoring was tracked down the re-structuring [4] which was

the extended history in the literature. Kim et.al assessed the

value of software refactoring within Microsoft and suggested

what refactoring is visible. The critical thing in software

refactoring is tool support. For this, researchers have proposed

tools to provide software refactoring. The most predictable

IDE’s such as Microsoft Visual Studio, Eclipse and IntelliJ

IDEA provide tool support to conduct refactoring [5].

 Developers have to identify the refactoring

opportunities’ if not they can’t apply refactoring tools.

Researchers have précised a number of typical situations which

may need refactoring which Fowler calls bad smells. Experts

proposed various smells detection algorithms that to identify

different kinds of code smells that may be automatic or semi-

automatic [6], [7].

 Extant refactoring tools and smells detection tools are

inactive and human driven. Murphy Hill et.al, [8] programmers

fail to invoke refactoring tools and smells detection tools which

may result in a delay of refactoring and results in higher cost of

refactoring. The reason for this is that unaware of extant tools,

don’t know where to invoke the tools and when to detect and

resolve code smells.

 We proposed a Monitor based clamant refactoring

framework. Finally, we apply and evaluate the proposed

framework and the result might help inexperienced software

engineers in removing more code smells quickly.

II. RELATEDWORK

 The various software refactoring tools are available in the

market for example Eclipse and Microsoft visual studio, IntelliJ

IDEA. Extant refactoring tools cannot be invoked until

refactoring opportunities are identified by the software

engineers with the help of code smells detection tools it may be

the automatic or semi-automatic. Researchers are seeking to

enhance the usability of software refactoring tools. Murphy-hill

and Black [9] introduce the five values to improve the usability

of refactoring tools. The extent of automation refactoring tools

varies depending upon the refactoring activities. The reliability

of a refactoring tool mostly depends upon the ability to

guarantee that is provided for refactoring transformation is truly

behavior preserving contemporary software development tool

only supports primitive refactoring.

According to Beck, bad smells are “Structure of a code

that suggests the possibility of refactoring”. Bad smells are the

signs of potential problems with the code that might require

refactoring. A bunch of code smells detection tools for both

automatic and semiautomatic are available for various bad

smells detection. Travassos et.al [10] proposed a technique

called reading technique which makes the developer to identify

the bad smells. Tourwe and Mens proposed an algorithm named

smells detection algorithm with Logic rules in SOUL, Logic

programming language that to identify the bad smells in the

Journal of Applied Physics and Engineering Vol.1, No.1 (2016) 30-33

30

Selected paper: International Conference On Computing (NECICC-2k15)

logic programs. Moha et.al proposed a smells detection

algorithm especially for Domain Specific Language (DSL)

which is similar to that of Tourwe and Mens algorithm but

slightly different in detection.

 Munro proposed the Metric based approach which is a smells

detection algorithm for java programs. Van Rompaey ET .al

extend the Munro algorithm with the feature of detection of two

kinds of smells general fixtures and eager test. Tsantalis and

Chatzigeorgiou proposed a genetic based algorithm which has to

find out the bad smells Feature envy and it can refactor by move

method.

III. FRAMEWORK

This section shows the clamant refactoring with Monitor

Framework, which takes out the developer to detect and resolve

bad smells. Figure.1, show the overview framework of our

proposed system which contains the monitor, smells detection,

smells view, refactoring tools, and feedback controller. Each

have their own role that to make a clamant refactoring if there

may be any changes occur in the source code which leads to the

need of refactoring technique. With this framework the

programmer can analyze the smells instantly whenever changes

occurred in source code and results in potential code smells. The

proposed framework shows the detection and removal of the

various code smells. When a programmer makes a change in the

source code, then the changes are getting analyzed by the

monitor.

A. Monitor & Smell Detection

 Monitor to analyze the changes and those changes are getting

forwarded to Smell Detection. Smell detection encloses the

Code Smell Detector and Refactoring Manager. The various

code smell detection algorithm is integrated and based upon the

code smell the refactoring methods are suggested to the

developer. So that the developer can easily identify the code

smells and invoke appropriate refactoring methods to resolve

those smells. The developer can be able to view the suggestion

of code smell in the smell view. Smell view is the small

message box which shows the explanation and suggestions. The

framework is composed up of a monitor, collection of smells

detectors and a smells view, a feedback controller. The

explanation for monitor, smell detectors and refactoring tools

and feedback controller are provided in the following

paragraphs.

 Monitor is to oversee the changes made in the source code.

This may run in the background of the source code, if it

analyzes some changes in the source code then it calls for smells

detectors. This has to perform instantly and take out the

knowledge of the smells and provide to the developer. The

monitor is meant to give a warning so that a mistake can be

avoided by the developer.

B. Smell Detectors & Refactoring Tools

This may contain a collection of code smells detectors for

detecting various code smells like a Large Parameter List, Lazy

Classes, Large Class, Long Method, Switch Statements, and

Common Methods in Sibling Classes, Duplicated Code and

Feature Envy. Refactoring tools are to be extant one, but a

detection algorithm is to be different from extant which may

carry out by this INS Refactor tool. We improve the

performance of this tool for improving the tool tendency to

detect more code smells. B. Biegel and S. Diehl [11] proposed

JCCD is written in Java to detect clones in Java source code.

C. Feedback Controller

 This may contain a collection of code smells detectors for

detecting various code smells like a Large Parameter List, Lazy

Classes, Large Class, Long Method, Switch Statements, and

Common Methods in Sibling Classes, Duplicated Code and

Feature Envy. Refactoring tools are to be extant one, but a

detection algorithm is to be different from extant which may

carry out by this INS Refactor tool. We improve the

performance of this tool for improving the tool tendency to

detect more code smells. B. Biegel and S. Diehl [11] proposed

JCCD is written in Java to detect clones in Java source code.

D. Smell View

 If the changes occur in a source code it forwards to a code

smells detectors which detect the bad smells and these smells

are viewed with the help of smells view on the developer. This

helps the developer to easily identify the location and invoke the

refactoring technique. The developer can quit the smells view

and continue coding. The smell view helps the programmer in a

friendly way of displaying the code smell and the extracting

method of the particular identified code smell.

Journal of Applied Physics and Engineering Vol.1, No.1 (2016) 30-33

31

Selected paper: International Conference On Computing (NECICC-2k15)

Figure1. Overview of the Framework

IV. DIFFERENT SMELLS IN CODE

 A smell in source code is evidence that indicates something

incorrect somewhere in the source code. If a bad smell occurs it

denotes that the code should be rechecked. Identifying those

places of bad design is a challenging job for inexperienced

developers. These areas of bad scheme are known as Bad

Smells. To operate mechanism of refactoring it is significant to

decide when refactoring should start and when refactoring

should stop. Unless if we don’t understand when refactoring

needs should be considered refactoring does not carry full

benefits. If we do not understand when refactoring needs to be

applied. Making it easier about a software developer in deciding

whether or not particular software needs to be refactored,

Fowler & Beck gave a series of bad code smells.

A. Descriptions of smells

Duplicated Code:Finding the same code structure more than one

place. For example, this problem may have the two sibling

subclasses.

Solution: The duplication is eliminated by using Extract Method

and Form Template Method in both similar classes.

Long Method:Long Method is more difficult to understand, and

then performance concerns with respect to lots of shot methods

are largely obsolete. The Long Method smell is related to the

Brain Method smell explain by Lanza et al. [LM06], which

centralize the functionality of a class, in the same manner God

Class centralizes the functionality of the whole subsystem, or

sometimes even a complete system.

Solution: Decompose conditional, Extract Method, Replace

Temp with a query.

Large Class:Class that has too many instance variables or

methods, duplicated code.

Solution: Extract Class, Extract Interface, And Introduce

Foreign Method.

Long Parameter List: Long parameter list is difficult to

understand, because they become incompatible and difficult to

use, and because you are forever changing them as we need

more data.

Solution: Introduce Parameter Object, Replace parameter with

Method.

Divergent Change:Occurs when one class are frequently

changed from into different ways for different reasons.

Solutions: Extract Class.

Feature Envy:Feature Envy is a Code Smell, occurs to methods.

A method has Feature Envy on another class, if it uses more

features (i.e. Fields and methods) of another class than on its

own.

Data Clumps:Data Clumps smell means that two or more data

items possessed in number of places.

Solutions: Preserve Whole Object or Introduce Parameter

Object and Extract Class.

V. EVALUATION

 This clamant refactoring may facilitate more refactoring with

leisure time for large number of resolved code smells. Clamant

refactoring is to take out the inexperienced software engineers to

make them to do more refactoring quickly. In earlier stages to

detect the smells of manually driven, but it takes more time for

detecting smells and lesser refactoring. The Ins Refactor tool has

to identify the wrong method location called feature envy

smells. This tool has been plugged in the eclipse through that the

developer can detect the bad smells. Feature Envy refers to

smells when the methods make too many calls to other classes

to obtain data or functionality.

Source Code Programmer

Smell

Smell

Detection

Monitor Refactoring

Tools

Feedback

Controller Code smell

Detector

Refactoring

Manager

Changes

Changes

Changes

Parameter

Feedback

Suggestions

Journal of Applied Physics and Engineering Vol.1, No.1 (2016) 30-33

32

https://sourcemaking.com/refactoring/preserve-whole-object

Selected paper: International Conference On Computing (NECICC-2k15)

 In the earlier Ins Refactor [11] prototype implementation the

eight kinds of smells were detected. The prototype has

implemented for the detection of Data class, Large class, Long

Method, Switch Statement, Public Field, Sibling Class,

Duplicated Code, and Long Parameter List that is based on

JCCD [12]. This prototype is based on theEclipse and Java.

Modified source code is get compared with the all other source

code which to make identification for similarities. Identified

smells are notified in the smells view where developer can

easily notify the bad smells.

Feature Envy = max c ≠ cm (|Fc|) - |Fcm|

Where, Fc-- the set of features used by m that belong to type c,

Cm-- the class in which m is defined,

The Feature Envy code smells can be detected by using the

above Detection Strategy. Then Feature envy smell detectors,

the various code smells detector is getting integrated in our Ins

Refactor tool that detects the various code smells and help the

programmer to resolve the smells. This Ins Refactor helps the

programmer to identify the code smells instantly and helps in

doing the refactoring without delay in processing.

Figure 2. Evaluations of Code Smells

 The Figure 2. Shows the graph which represents the variation

of identification bad smells like Large Class, Long Method,

Public Field, Sibling Class, Duplicated Code, Data Class, Large

Parameter List, Switch Statements, Feature envy among the two

group peoples. The Group 1 is the team of programmers who

carries the Ins Refactor and the Group 2 peoples works without

Ins Refactor. From the above graph we can able to identify that

the variation between two groups. The different kinds of code

smells charted above are the commonest code smells which

occurred mostly during the programming. Ins Refactor tool

helps the programmer to identify the code smells promptly. The

lifespan and range of the various kinds of code smell differ for

each level of programming.

VI. CONCLUSION & FUTURE WORK

 In this work, instant refactoring framework of clamant

algorithm is proposed which makes the developer to identify the

changes of that source code analyze results of the bad smells

and to resolve smells it makes to conducting refactoring quicker

for the inexperienced developers. This framework has to detect

nine kinds of code smells and also improve the performance of

framework to reduce software cost and improve quality. The

feature work carried over on other kinds of Eclipse, Visual

studio and intelliJ IDEs etc. Also the semi-automated change

modification will also be fully automated under the system that

facilitates the developer for clear refactoring process.

 The future work is to evaluate the proposed framework,

further based on more applications. The prototype

implementation, INS refactor focuses on functionality rather

than performance, and then future work is needed to improve

the performance. The proposed framework could be improve

code quality and reduce software cost.

REFERENCES

[1] T. Mens and T.Touwe, “A Survey of Software Refactoring,” IEEE

Transactions Software Eng., vol. 30, no. 2, pp. 126-139, Feb. 2004.

[2] W.F. Opdyke, “Refactoring Object-Oriented Frameworks,” PhD dissertation,

Univ. Of Illinois at Urbana-Champaign, 1992.

[3] R. Arnold, “An Introduction to Software Restructuring,” Tutorial on
Software Restructuring, R. Arnold ,ed. IEEE CS Press,1986.

[4] E. Mealy and P. Strooper, “Evaluating Software Refactoring Tool Support,”

Proc. Australian Software Eng. Conf., pp. 331-340, 2006.
[5] T. Kamiya, S. Kusumoto, and K. Inoue, “CCFinder: A Multi Linguistic

Token Based Clone Detection System for Large Scale Source Code,” IEEE

Trans. Software Eng., vol. 28, no. 6, pp. 654-670, July 2002.
[6] N. Tsantalis and A. Chatzigeorgiou, “Identification of Move Method

Refactoring Opportunities,” IEEE Trans. Software Eng., vol. 35, no. 3, pp.

347-367, May/June 2009.
[7] E. Murphy-Hill, C. Parnin, and A.P. Black, “How WE Refactor, and How

WE Know IT,” IEEE Trans. Software Eng., vol. 38, no. 1, pp. 5-18,

Jan/Feb. 2012.
[8] E. Murphy-Hill and A.P Black, “Refactoring Tools: Fitness for Purpose,”

IEEE Software, vol. 25, no. 5, pp. 38-44, Sept/Oct. 2008.

[9] G. Travassos, F. Shull, M.Fredericks, and V.R. Basili, “Detecting Defects in
Object-Oriented Designs: Using Reading Techniques to Increase Software

Quality,” Proc. 14th ACM SIGPLAN Conf. Object-Oriented

Programming, Systems, Languages, and Applications, pp. 47-56, 1999.
[10] Hui Liu, XueGuo, and Weizhong Shao, ”Monitor-Based Instant Software

Refactoring,” IEEE Transactions on Software Engineering, vol. 39, no. 8,

August 2013.
[11] B. Biegel and S. Diehl, “JCCD:A Flexible and Extensible API for

Implementing Custom Code Clone Detectors,” Proc. 25
th

IEEE/ACM Int’l

Conf. Automated Software Eng., pp. 167-168, Sept. 2010.

0
0,5

1
1,5

2
2,5

3
3,5

4

D
at

a
C

la
ss

La
rg

e
 C

la
ss

Lo
n

g
M

e
th

o
d

Sw
it
ch
…

P
u

b
lic

 F
ie

ld

C
o
m
m
o
n
…

D
u
p
lic
ta
e
d
…

Lo
n
g…

Fe
at

u
re

 e
n

vy

Expermental
Group

Control Group

Journal of Applied Physics and Engineering Vol.1, No.1 (2016) 30-33

33

